102. Enantioselective Synthesis of 3-Azabicyclo[4.3.0|nonane Alkaloids

by Maria Magdalena Cid and Esteban Pombo-Villar*
Preclinical Research, Sandoz Pharma Ltd., CH-4002 Basel

(28.1.93)

Abstract

The stereospecific synthesis of the monoterpene alkaloids (-)- α-skytanthine ($(-)-2),(-)-N$-demethyi- δ-skytanthine $((-)-7)$, and $(+)$-epidihydrotecomanine $(+)-4$ was achieved from a common intermediate 22 , which in turn was obtained from ($1 R, 4 S, 1^{\prime} S$)-2-(1^{\prime}-phenylethyl)-2-azabicyclo[2.2.1]hept-5-ene (10), via a ketene aza-Claisen rearrangement. The piperidine derivative $(+)-31$, formally the aza-analogue of $(+)$-isoiridomyrmecin, was also obtained from the same intermediate 22.

1. Introduction. - The extracts of Tecoma stans, a bush common to Latin America, have been used in folk medicine as hypoglycemics [1], and this activity was ascribed to its alkaloid tecomanine ((-)-1) [2]. Analogous saturated terpene alkaloids, i.e. 2-5, were reported from plants of the genus Skytanthus and other Tecoma species [3], with varied biological activity [4]. Recently, Takahashi and coworkers [5] reported the isolation of the structurally related alkaloid altemicydin (6), which presented acaricidal and antitumour activity.

$(-)-1$

$(+)-4$

(+)-2

$(-)-5$

$(+)-3$

To date, few of these compounds were synthesised as homochiral entities. Marini-Bettòlo and his collaborators prepared $(+)-\alpha$-skytanthine $((+)-2)$ and $(+)-\delta$-skytanthine $((+)-3)$ from iridomyrmecin, nepetalic and nepetalinic acids, and thus established their absolute configurations [6]. Oppolzer and Jacobsen [7] reported the synthesis of $(+)-\alpha-$ skytanthine $((+)-2)$ and $(+)$ - δ-skytanthine $((+)-3)$ via an elegant intramolecular Mg-ene reaction. Kametani synthesised $(+)$-tecomanine $((+)-1)$ [8]. It seemed desirable, however, to design a more flexible yet stereocontrolled route to these compounds and their analogues which would allow ready prediction of the absolute configuration of the
products. We now report the synthesis of $(-)$ - α-skytanthine $((-)-2),(+)$-epidihydrotecomanine (+)-4, and (-)- N-demethyl- δ-skytanthine (-)-7 from a common intermediate 22, readily obtainable in enantiomerically pure form, using (1-phenylethyl)amine as the original source of chirality. The retrosynthetic rationale for the synthesis is shown in Scheme I for (-)- N-demethyl δ-skytanthine ((-)-7). Part of this work already appeared in preliminary communications [9].

Scheme 1. Retrosynthetic Analysis of the 3-Azabicyclo[4.3.0)/nonane Skeleton

2. Results and Discussion. - 2.1. Aza-Diels-Alder Reaction. It was necessary to obtain the bicyclic starting materials in enantiomerically pure form (see Scheme 1). Using the aza-Diels-Alder reaction described by Larsen and Grieco [10], racemic 2-benzyl-2-azabi-cyclo[2.2.1]hept-5-ene (8) was readily obtained. Attempts at resolving this amine by crystallisation with a variety of chiral acids failed. Samples of enantiomerically pure (+)and (-)-8 were obtained by repeated chromatography on an analytical column packed with Chiracel-OD. The quantities obtained, however, were insufficient for synthetic purposes.

It was, therefore, envisaged to prepare the enantiomerically pure bicycloheptanes by a diastereoselective aza-Diels-Alder reaction, followed by chromatographic purification of the diastereoisomeric adducts. Diastereoselective aza-Diels-Alder reactions were described using (1-phenylethyl)amine [10] [11] and amino acids [12] as the sources of chirality. We investigated the use of other commercially available benzylic amines for this reaction [13], but they provided no real advantage for the preparation of large quantities of starting material over the original method described by Larsen and Grieco [10], who used (1-phenylethyl)amine as the source of chirality. We reported elsewhere on the determination of the absolute configuration of these compounds [13].
2.2. Ketene Aza-Claisen Rearrangement. Initial studies of the ketene aza-Claisen rearrangement were carried out in the racemic series. When rac-2-benzyl-2-azabicyclo-[2.2.1]hept-5-ene (8) was treated with dichloroketene generated in situ from dichloroacetyl chloride with diisopropylethylamine $\left((\mathrm{i}-\mathrm{Pr})_{2} \mathrm{EtN}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0°, 3-ben-zyl-5,5-dichloro-3-azabicyclo[3.2.0]non-7-en-4-one (9) was isolated after 20 h (Scheme 2).

Scheme 2. Aza-Claisen Rearrangement

The structure of the rearranged product 9 was secured by NMR spectroscopy (for its dechlorinated parent, see Exper. Part). Increasing the temperature reduced the yield of 9 and increased the quantity of tarry side-products. When repeatedly attempting the reaction of $\mathbf{8}$ with dichloroketene generated in situ from Zn and trichloroacetyl chloride, only unreacted starting material was recovered ${ }^{1}$).

The NMR assignments of 9 are obtained by homonuclear decoupling and confirmed by ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ correlation experiments. The coupling constant of the protons at the ring junction $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}-\mathrm{C}(6)$ of 10.1 Hz is consistent with either a cis- or trans-ring junction. Evidence for a cis-junction is obtained from a difference NOE experiment, in which irradiation at $3.88 \mathrm{ppm}(\mathrm{H}-\mathrm{C}(6))$ results in substantial enhancements at $2.79(\mathrm{H}-\mathrm{C}(1)), 5.79(\mathrm{H}-\mathrm{C}(7))$, and to a lesser extent, at $3.28(\mathrm{H}-\mathrm{C}(2))$ ppm. The coupling constants between $\mathrm{H}-\mathrm{C}(1)$ and both $\mathrm{H}-\mathrm{C}(2)$ protons are very similar (6.8 and 7.0 Hz , resp.). This agrees with what is predicted from energy-minimised molecular models ${ }^{2}$) for a boat-chair conformation with the five-membered ring in an 'endo'-position, where the corresponding torsion angles $\mathrm{H}-\mathrm{C}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}-\mathrm{C}(2)$ are 56 and 61°, respectively (see below for a discussion of the conformations in these systems).

Similarly, optically active $\mathbf{1 0}$ and its diastereoisomer $\mathbf{1 3}$ reacted with dichloroketene to azabicyclo[4.3.0]nonenones 11 and 14 in 61 and 52% yield, respectively (see Schemes 2 and 4 , resp.), the remanent presumably being lost due to a competing retro-Diels-Alder process (no other products could be identified).

The cis-ring junction in 9,11 , and 14 is expected from a concerted [3,3] rearrangement following a transition state with a boat conformation. However, as shown in Scheme 3, two alternative mechanisms can be proposed for this reaction. It was previously reported by Ghosez et al. [15] that dichloroketene did not react with norbornene. It was not surprising, therefore, that the nucleophilic N -atom of 8,10 , and 13 would react with dichloroketene. Conceivably, the resulting zwitterionic intermediate could undergo retro-Diels-Alder reaction [16], fragmentations and recombinations [17], and rearrangements [18]. The stereochemical outcome of the reaction points to a concerted [3.3] sigmatropic process. However, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ experiments in similar N-(arylethyl)-2-azabicyclo[2.2.1]-hept-5-ene systems indicate that the preferred conformation in solution of the benzylic sidechain is as shown in the endo-face of the bicyclic system [13]. Thus, the only product obtained would be that deriving from nucleophilic attack at the most hindered face of the aza-norbornene, suggesting that either a) the kinetically favoured exo-attack is reversible and the intermediate zwitterion 12a dissociates or rearranges, equilibrating with the endo-adduct $\mathbf{1 2 b}$, which in turn rearranges leading to product, or b) interaction with the double bond and/or the phenyl ring directs the dichloroketene to the endo-face, to give 12b directly, as was observed for phenylselenenyl chloride additions to similar systems [19].

An alternative mechanism could involve a fragmentation of the zwitterion 12a formed after the kinetically favoured exo-attack, into an allyl cation and an amide enolate, in analogy to the acid-catalysed rearrangements reported in similar systems [17a]. Capture of the cation by the enolate C -atom could conceivably yield further products, containing either six- or seven-membered rings. The seven-membered-ring products are expected to

[^0]Scheme 3. Possible Mechanisms for the Aza-Claisen Rearrangement

kinetically disfavoured. By $\mathrm{C}-\mathrm{C}$ bond rotation, both faces of the allyl cation are available for capture by the enolate, to give, potentially, both cis- and trans-fused six-memberedring products. But only cis-fused products are observed, as expected for a [3.3] sigmatropic process.

Additional indication for a Claisen-like process is provided by the behaviour of the homochiral diastereoisomers $\mathbf{1 0}$ and $\mathbf{1 3}$, where the steric strain provided by the benzylic Me group might favour the fragmentation pathway. However, in both cases, the reaction results in complete transfer of chirality to the product, giving only the cis-adducts. Although the evidence at present is insufficient to rule out the fragmentation pathway, it is reasonable to assume that the rearrangements here reported proceed by a [3.3] sigmatropic process, accelerated by a number of factors, allowing the reaction to proceed at room temperature. It is conceivable that the actual mechanism of the reaction lies between the two extremes discussed here, and proceeds via a substantially polarised transition state.

The aza-Claisen rearrangement usually occurs at higher temperatures than those required for the corresponding O -analogues [20]. The rates of the reaction can be substantially lowered a) by electron-withdrawing or -donating substituents at the 2 - or 5 -positions [21], b) by introducing a positive charge on the N -atom by protonation [22], quaternisation [23], or complexation with Lewis acids [24], c) by introducing a negative charge in the system, as in the case of amide-enolate Claisen rearrangements [25], d) by generating a zwitterionic intermediate [26], and e) in the presence of Pd^{0} catalysts [27].

Brown et al. [28a] noticed that for a constrained system in a boat conformation, Cope-like processes can take place at or below room temperature. This behaviour is also known of 1,2-divinylaziridines, which undergo rapid aza-Claisen rearrangements below -20°. Clearly, although the lowest energy conformation is trans, inversion of the N -atom allows the cis-conformation to occur, presenting an ideal geometry for the rearrangement [29]. Although in both of these cases the driving force for the reaction is the release of ring strain, and the chair transition state is not available for the systems to react, a stereoelectronic factor may contribute to accelerate these rearrangements through the boat transition state [28b].

Additionally, the stability of the resulting amide further lowers the activation energy of the process, as in the Eschenmoser synthesis of γ, δ-unsaturated β-silylamides [30], and the rearrangement of O-allylliminoesters to γ, δ-unsaturated carboxamides [31], however, both of these examples still require high temperatures.

Analogous rearrangements were previously used for the synthesis of bicyclic systems [32]. During the course of our work, the aza-Claisen reaction of rac-2-benzyl-2-azabi-
cyclo[2.2.1]hept-5-ene (8) with diphenyl ketene was reported [33]. In all these cases, the stereochemical outcome is consistent with a [3.3] sigmatropic process. However, a more definitive description of the mechanism of this reaction awaits further experimental evidence.
2.3. The Tricyclic Intermediate and Its Reductive Opening. The reduction of the geminal dichloride moiety of $\mathbf{1 1}$ was cleanly achieved using $\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{Cl}$ to yield $\mathbf{1 7}$ (Scheme 4). At shorter reaction times in the analogous reduction of the diastereoisomer 14, a monochlorinated species 16 was isolated, indicating the stepwise reduction of the geminal dichloride moiety. At longer reaction times, the reduction was complete for both diastereoisomers, giving 15 and 17, respectively. Monomethylation of $\mathbf{1 7}$ was achieved

Scheme 4. Synthesis of the Tricyclic Intermediate 23 and Its Reductive Opening

a) $\mathrm{Zn}, \mathrm{AcOH}$; isolated yield $73 \%, \mathbf{2 3 a} / \mathbf{2 3 b} 1: 2$ (by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude product). b) SmI_{2}, THF/DMPU; isolated yield 67%, 23a/23b $1: 1$ (see a)). c) $\mathrm{Bu}_{3} \mathrm{SnH}$, benzene; isolated yield 65\%, 23a/23b 5:1 (see a)).
using the procedure of Trost and Kunz [34], by addition of the lithium enolate of $\mathbf{1 7}$ to MeI. No dimethylation was observed, but two epimeric products 18a and 18b (ca. 2:1) were formed. A pure sample of 18 a was isolated by HPLC and characterised, but the separation of the isomers was difficult. The mixture $\mathbf{1 8 a} / \mathbf{1 8 b}$ was epoxidised with buffered 3-chloroperbenzoic acid give a 3:1 mixture of epoxides $19 a$ and $19 b$ which could be readily separated by chromatography.

[^1]a double-resonance experiment, irradiation at $1.30 \mathrm{ppm}(d, J=7.4 \mathrm{~Hz}, \mathrm{Me}-\mathrm{C}(5)$ of $\mathbf{1 8 b})$ results in a collapse of the signal at $2.10 \mathrm{ppm}(d q, J=11.0,7.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)$ of $\mathbf{1 8 b})$ to a broad $d,(J=11 \mathrm{~Hz})$. Irradiation at $1.89 \mathrm{ppm}(d m$, $J=17 \mathrm{~Hz}, 1 \mathrm{H}-\mathrm{C}(9)$ of $\mathbf{1 8 b}$) removes coupling $(J=17 \mathrm{~Hz})$ from the signal at $2.40 \mathrm{ppm}(d d d, J=5.0,10$, and 17 $\mathbf{H z}, 1 \mathbf{H}-\mathrm{C}(9)$ of $\mathbf{1 8 b})$. On irradiation of the $d q$ at $2.10 \mathrm{ppm}(\mathrm{H}-\mathrm{C}(5)$ of $\mathbf{1 8 b})$, the $\mathrm{Me}-\mathrm{C}(5) d$ of $\mathbf{1 8 b}(1.30 \mathrm{ppm})$ collapses. The coupling constant $J(5,6)$ can thus be clearly identified as 11 Hz , being compatible with a trans-diaxial interaction. In both $\mathbf{1 8 a}$ and $\mathbf{1 8 b}, \mathbf{M e}-\mathrm{C}(5)$ occupies a pseudo-equatorial position. The main product $\mathbf{1 8 a}$ is, therefore, the ($5 R$)- and $\mathbf{1 8 b}$ the ($5 S$)-diastereoisomer.

In analogous fashion, the structures of $19 a$ and $19 b$ are readily deduced from their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. For $\mathbf{1 9 b}$, $J(1,2 \mathrm{ax})=10, J(1,2 \mathrm{eq})=5.8$, and $J(5,6)=10 \mathrm{~Hz}$ are consistent with a trans-diaxial position of bridgehead $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}-\mathrm{C}(6)$ and of the corresponding $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)$ and $\mathrm{H}-\mathrm{C}(5)$, as well as with one gauche-interaction between $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)$. This implies that the conformation of 19 b is an 'exo'-chair-boat, and thus the configuration at $\mathrm{C}(5)(S)$. For 19a, $J(1,2 \mathrm{ax})$ and $J(1,2 \mathrm{eq})$ are very similar, namely 3.0 and 4.5 Hz . This is expected for an 'endo'-chair-boat conformation, as discussed above for 9 , indicating that the configuration at $\mathrm{C}(5)$ is (R).

Each epoxide 19a and 19b was treated with lithium diethylamide to yield, as expected, the same intramolecular epoxide-opening product 20 (Scheme 4). Thus, for preparative purposes, the mixture $19 a / 19 b$ was directly converted to 20 . Swern oxidation [35] of the tricyclic hydroxy-ketone 20 readily gave the crystalline diketone 21, which was selectively monomethylated using the procedure of Callant et al. [36] to yield the key intermediate 22 as a crystalline solid. As expected, the Me group at $C(7)$ of 22 was on the convex face of the molecule (${ }^{\prime} \mathrm{H}-\mathrm{NMR}$).

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 22 with a $J(6,7)$ of 2.5 Hz suggests an angle close to 90° between $\mathrm{H}-\mathrm{C}(7)(1.91$ $\mathrm{ppm})$ and $\mathrm{H}-\mathrm{C}(6)(2.34 \mathrm{ppm})$. In fact, from molecular models, the expected angles are either 90° or 35°, depending on the orientation of the Me group. Confirmation of the configuration is obtained from a ROESY experiment, where NOE's can be observed between $1 \mathrm{H}-\mathrm{C}(5)(2.73 \mathrm{ppm})$ and $\mathrm{H}-\mathrm{C}(7)(1.91 \mathrm{ppm})$. Interestingly, the same $\mathrm{H}-\mathrm{C}(5)$ presents a clear NOE with the benzylic $\mathrm{Me}-\mathrm{C}\left(1^{\prime}\right)(1.41 \mathrm{ppm})$, indicating that this Me group points towards the concave face of the tricycle.

Thus, the rigid tricyclic skeleton of 21 enabled the stereocontrol in the methylation to the key intermediate 22 . To provide again the 3-azabicyclo[4.3.0]nonane skeleton, the cyclopropane moiety of $\mathbf{2 2}$ was cleaved by reduction with a variety of reagents, yielding 23a/23b (see Scheme 4). The reaction was regioselective, since only cleavage of the 2,9 bond occurred. This parallels a result of Wenkert and Yoder [37] who established that a dicarbonyl moiety directs the cleavage of a cyclopropane moiety in a similar way as previously shown by Dauben and coworkers [38] for the reductive cleavage of carbonyl cyclopropanes: the bond cleaved is that which best overlaps with the π-system of the carbonyl groups.

However, regarding the configuration at $\mathrm{C}(5)$ substantial differences in the ratio 23a/23b were obtained with different reagents. Subtle effects are known to control the stereochemistry of such reactions [39]. Whereas both SmI_{2} in THF and alcohol-free $\mathrm{Li} / \mathrm{NH}_{3}{ }^{3}$) gave a practically identical $1: 1$ proportion of the stereoisomers at $\mathrm{C}(5)$, reduction with $\mathrm{Zn} / \mathrm{AcOH}$ resulted in a ratio of $1: 2$ for $\mathbf{2 3 a} / \mathbf{2 3 b}$. Formally, in these cases, a two-electron reduction of the cyclopropyl ketone to an enolate carbanion takes place. After the first electron transfer, the ketyl radical generated undergoes a reversible fragmentation to a radical enolate which is either protonated, abstracts a H -atom from a suitable donor, or is further reduced to a dienolate. Protonation of this dienolate controls the steric outcome of the reaction. Presumably, both the Sm and the Li enolate, in the

[^2]absence of a good H -donor, result in a $1: 1$ equilibrium mixture. The Zn enolate, however, is rapidly protonated by the solvent, thus kinetically trapping the intermediate to give preferentially 23b. Alternatively, coordination to the surface of the Zn may be responsible for directing the protonation. Reduction with $\mathrm{Bu}_{3} \mathrm{SnH}$ inverted the ratio, giving 23a/23b 5:1. In this case, the reaction proceeds as a conjugate addition of the H -atom to the cyclopropyl ketone, with approach of the reagent from the less hindered convex side to give 24a as the main product. In any case, 23a and 23b, containing already all stereogenic centres of the target alkaloids, were cleanly separated by chromatography.
2.4. Alkaloids $(-)-2,(+)-4$, and $(-)-7$. To complete the synthesis of $(-)-N-$ demethyl- δ-skytanthine ((-)-7), it was necessary to remove the carbonyl groups at $\mathrm{C}(4)$ and $\mathrm{C}(8)$ and the N-phenylethyl moiety. Thus, treatment of $23 a$ with propane-1,3-dithiol in CHCl_{3} in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave dithiane 24 in 81% yield (Scheme 5). Reduction with LiAlH_{4} provided amine 25 , which was converted to (-)-7 in two steps by reduction with Raney-Ni in EtOH [40] followed by hydrogenolysis with $\mathrm{Pd} / \mathrm{AcOH}$. The structure of $(-)-7$ was established by spectroscopic methods, and confirmed by comparison to an authentic sample from Tecoma arequipensis ${ }^{4}$) [3a].
Scheme 5

23b

[^3]Initial attempts to synthesise (-)- α-skytanthine ($(-)-2$) from 23b paralleled the synthesis of (-)-7 from 23a. Thus, 23b was treated with ethane-1,2-dithiol or propane-1,3-dithiol to give dithiolane 26 and dithiane 27, respectively (Scheme 5). Both 26 and 27 could be reduced with LiAlH_{4} to the amines 29 and 30, respectively, but repeated attempts to reduce the thioacetal moieties with Raney- Ni failed. As an alternative, treatment of 23b with (4-toluenesulfono)hydrazide and in situ reduction with sodium cyanoborohydride [41] gave 30 in 44% yield. Debenzylation proceeded in 15 min upon reduction with $\mathrm{Li} / \mathrm{NH}_{3}$. The resulting lactam $\mathbf{3 1}^{5}$) was then reduced with $\mathrm{LiAlH}_{4}(\rightarrow \mathbf{3 2})$ and N-methylated by an Eschweiler-Clarke procedure to give (-)-2. Its structure, determined from spectroscopic parameters, was confirmed by comparison to an authentic sample of the enantiomeric (+)- α-skytanthine ${ }^{6}$) [7].

The oxygenated analogue of $(-)-\mathbf{2}$, the dihydrotecomanine (+)-4, was obtained from 23b by protection of the carbonyl group at $C(8)$ as a dioxolane. Thus, treatment of 23b with ethylene glycol in toluene with catalytic TsOH in a Dean-Stark apparatus gave the crystalline dioxolane 33 in 74% yield. After reaction with $\mathrm{Li} / \mathrm{NH}_{3}$ to the crystalline lactam $34\left(90 \%\right.$ yield) and reduction with LiAlH_{4} to 35 , deprotection and methylation to $(+)-4$ was achieved in one step by treatment with formaldehyde in $\mathrm{HCOOH}(61 \%$ yield from 34).
2.5. Conformation of the cis-Fused Piperidinones. In cis-fused bicyclo[4.3.0]nonane systems with sp^{2} centres in positions 3 and 4 , there are two possible chair-boat conformations: the five-membered ring may adopt an 'endor'- or an 'exo'-position with respect to the boat. Similar conformations can be observed in the 3-azabicyclo[4.3.0]nonan-4-one systems we have described. This behaviour was studied in the analogous lactones, the iridoids [42] [43]. The corresponding lactams, however, have not been the subject of much attention.

The conformations 'endo'-chair-boat and 'exo'-chair-boat of our 3-azabicyclo-[4.3.0]nonan-4-ones can be readily distinguished by ${ }^{1} \mathrm{H}-\mathrm{NMR}$. As mentioned above, for the 'endo'-chair-boat, the coupling constants between $\mathrm{H}-\mathrm{C}(1)$ and both $\mathrm{H}-\mathrm{C}(2)$ are expected to be similar. In contrast, for the 'exo'-chair-boat, $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)$ are in an antiperiplanar arrangement, whereas $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)$ have a gauche spatial relationship, thus giving rise to very different coupling constants. The conformational assignments were subsequently confirmed by NOE experiments.

In general, for both the unsubstituted (e.g. 15 and 17) and the 5,5-disubstituted 3-azabicyclo[4.3.0]nonan-4-ones (e.g. 11 and 14), the preferred conformation is a boatchair, with the five-membered ring in the 'endo'-position. This is also the case for the $5-\alpha$-substituted systems described above (e.g. 18a, 19a, or 23a), regardless of the substitution of the five-membered ring. A single β-substituent at $\mathrm{C}(5)$ is sufficient to overcome this modest preference, as the substituent at $\mathrm{C}(5)$ must adopt a pseudoequatorial position. This constitutes the dominating factor in determining the conformation in the 3 -azabicyclo[4.3.0]nonan-4-ones. Thus, the 5 - β-substituted compounds in this series, namely 18b, 19b, 23b, 26-31, and 33-35, all exist preferentially in an 'exo'-chair-boat conformation. Further studies are necessary, however, to establish the size of the barriers to conformational inversion.

[^4]3. Conclusion. - The induction of all the stereogenic centres in the target alkaloids $(-)-2,(+)-4$, and $(-)-7$ starting from (R) - or (S)-1-phenylethylamine was achieved via a hetero-Diels-Alder reaction followed by the stereospecific ketene aza-Claisen rearrangement. The enantiomerically pure tricyclic intermediate 22 allowed a flexible stereocontrolled synthesis of these terpene alkaloids and may be used for the synthesis of related more complex naturally occurring terpene alkaloids. Additionally, the described synthetic route may be used for the stereocontrolled synthesis of novel aza-analogues of known iridoids, such as iridomyrmecin, and of their corresponding epimers, which, although expected to be as ubiquitous as the iridoids themselves on biogenetic grounds, have rarely been reported from natural sources [44].

We wish to thank the members of the spectroscopic services at Sandoz, in particular J. France, J. Ponelle, and T. Zardin for their special efforts, Dr. H.-U. Gremlich and O. Hurt for CD measurements, Dr. E. Küsters and R. Reville for the chromatographic separation of the enantiomers of 8,H.P. Weber for technical assistance, and Dr. G. Shapiro for many fruitful disucssions.

Experimental Part

General. Solvents were purchased from Merck, BuLi and SmI_{2} from Aldrich, and the other reagents from Fluka. TLC: Merck silica gel $60 F_{2 s 4}$ anal. plates, detection by UV, I_{2} soln. ($\mathrm{I}_{2}(25 \mathrm{~g}), \mathrm{KI}(20 \mathrm{~g}), \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 1: 4$ (1000 ml)), or Dragendorff's reagent. Flash chromatography (FC): Merck silica gel 60 ($230-400$ mesh), Alox (act. III). Prep. TLC: silica gel $60 F_{254}$. M.p.: Büchi-510 melting-point apparatus; in open capillaries, uncorrected. $[\alpha]_{D}^{20}:$ Perkin-Elmer-241 polarimeter, 1 ml microcuvette $(l=10 \mathrm{~cm})$. CD $(\lambda, \Delta \varepsilon)$: Jobin Yvon CD-6. IR Spectra (\tilde{v}, cm^{-1}): Bruker-IFS-66 spectrophotometer. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra (δ, ppm): Bruker AM $500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz}\right.$), Bruker AMX $400\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100.62 \mathrm{MHz}\right)$, Bruker AM $360\left({ }^{1} \mathrm{H}, 360 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 90.6 \mathrm{MHz}\right)$; chemical shifts in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}$ as internal reference; ${ }^{13} \mathrm{C}$ assignments were confirmed with the aid of JMOD and ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H} 2$ D-correlation experiments, as previously described [13]. MS (m / z (\%)):VG-TS-250 spectrometer (EI, 70 eV); Varian-MAT-212 spectrometer ($\mathrm{FAB}, 8 \mathrm{keV}$). Elemental analyses were performed in the analytical service of Sandoz Ltd.

Enantiomers of 2-Benzyl-2-azabicyclo[2.2.1]hept-5-ene (8). Compound 8 was prepared according to [10]. The enantiomers were separated by automated HPLC on a Chiracel-OD column ($4 \times 250 \mathrm{~mm}$, hexane $/ \mathrm{i}-\mathrm{PrOH} / \mathrm{Et}{ }_{2} \mathrm{NH}$ $18: 2: 0.1$, flow rate $1 \mathrm{ml} / \mathrm{min}, 0.4-\mathrm{ml}$ injection of $1 \mathrm{mg} / \mathrm{ml} \mathrm{soln}$. of 8 in hexane). After 415 injections, the pure fractions were pooled and evaporated at r.t. $/ 0.02-0.03 \mathrm{Torr}:(+)-8(51 \mathrm{mg}, 31 \%)$ and $(-)-8(48 \mathrm{mg}, 29 \%)$). R_{f} (silica gel, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)<0.01 . R_{\mathrm{f}}$ (silica gel, $\mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 99: 1$) 0.37 .
$(+)-8:[\alpha]_{\mathrm{D}}^{20}=+53.5\left(c=0.23, \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=2.957 \mathrm{~mm}, \mathrm{MeOH}): 197(+15.5)$; enant. purity (HPLC) $>99 \%$.
$(-)-8:[\alpha]_{\mathrm{D}}^{20}=-55.2\left(c=0.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=2.757 \mathrm{~mm}, \mathrm{MeOH}): 195(-16.7)$; enant. purity (HPLC) $c a$. 95\%.
($1 \mathrm{R}^{*}, 6 \mathrm{~S}^{*}$)-3-Benzyl-5,5-dichloro-3-azabicyclo[4.3.0]non-7-en-4-one (9). (i-Pr) $)_{2} \mathrm{EtN}(18.5 \mathrm{ml}, 98 \mathrm{mmol})$ was added in 1 portion to a cooled (0°) soln. of $\mathbf{8}(10 \mathrm{~g}, 54 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ under Ar. A soln. of dichloroacetyl chloride ($10.4 \mathrm{ml}, 98 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}(100 \mathrm{ml})$ was added dropwise over 4 h and the mixture kept at 0° for 20 h , after which it was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, sat. aq. NaHCO_{3} soln. $(150 \mathrm{ml})$, and brine (100 ml). The org. phase was dried $\left(\mathrm{Na}_{3} \mathrm{SO}_{4}\right)$ and evaporated and the brown oil chromatographed (silica gel, t - $\mathrm{BuOMe} /$ hexane $1: 2$ to $1: 1$): $9(10.8 \mathrm{~g}, 68 \%)$. Colourless crystals. M.p. $106-108^{\circ}\left(\mathrm{Et}_{2} \mathrm{O}\right) . R_{\mathrm{f}}$ (silica gel, $t-\mathrm{BuOMe} /$ hexane $\left.1: 2\right) 0.25 . \mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $3030 \mathrm{w}, 2920 \mathrm{~m}, 2850 \mathrm{w}, 1690 \mathrm{~s}, 1497 \mathrm{~m}, 1412 \mathrm{~m}, 1355 \mathrm{~m}, 810 \mathrm{~m} .{ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.97$ (ddddd,J=17.2, 2.4, 2.3, 2.1, $1 \mathrm{H}-\mathrm{C}(9)$); 2.60 (ddddd, $J=17.2,9.6,3.9,2.3,1 \mathrm{H}-\mathrm{C}(9)$); 2.79 (ddddd, $J=10.1,9.6,7.0,6.8,2.1$, $\mathrm{H}-\mathrm{C}(1)$) ; $3.28\left(d d, J=13.2,6.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.67\left(d d, J=13.2,7.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 3.88$ (br. $\left.d, J=10.0, \mathrm{H}-\mathrm{C}(6)\right)$; $4.52\left(d, J=14.6,1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 4.75\left(d, J=14.6,1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.79(d d t, J=5.8,2.3,2.3, \mathrm{H}-\mathrm{C}(7)) ; 5.89(d d t, J=5.8$, 2.3, 2.3, $\mathrm{H}-\mathrm{C}(8)) ; 7.29-7.40\left(\mathrm{~m}, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 33.4$ (C(1)); 39.1 (C(9)); 49.6 (C(2)); $51.8\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 60.8(\mathrm{C}(6)) ; 85.6(\mathrm{C}(5)) ; 127.5$ (arom. C$), 127.8(\mathrm{C}(7)$, arom. C$) ; 128.3$ (arom. C); $134.5(\mathrm{C}(8)) ; 135.7$ (arom. C); 163.4 (C(4)). FAB-MS (NOBA): 300 (12), 298 (61), 296 ($100, M^{+}$). EI-MS: 297 (3), 295 ($5, M^{+}$), 262 (38), 260 (74), 92 (31), 91 (100). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{NO}$ (296.196): C 60.8, H 5.1, $\mathrm{N} 4.7, \mathrm{Cl} 23.9$; found: C 61.0, H 5.1, N 4.7, Cl 24.0.
($1 \mathrm{R}^{*}, 6 \mathrm{~S}^{*}$)-3-Benzyl-3-azabicyclo[4.3.0]non-7-en-4-one. $\mathrm{NH}_{4} \mathrm{Cl}(1.73 \mathrm{~g}, 32.34 \mathrm{mmol})$ was added to a soln. of $9(1.6 \mathrm{~g}, 5.4 \mathrm{mmol})$ in dry $\mathrm{MeOH}(80 \mathrm{ml})$ cooled at 0°. The resulting soln. was stirred and Zn powder ($2.02 \mathrm{~g}, 54$ mmol) added in portions over 30 min . The mixture was allowed to warm to $\mathrm{r} . \mathrm{t}$. and stirred 3 h more, after which it
was filtered. The filtrate was evaporated, the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, the resulting soin. washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the crude product recrystallised ($\left.(\mathrm{i}-\mathrm{Pr})_{2} \mathrm{O}\right)$: colourless crystals ($0.9 \mathrm{~g} ; 74 \%$). M.p. $74-75^{\circ}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 3030 w, 2920 \mathrm{~m}, 2850 \mathrm{~m}, 1650 \mathrm{~s}, 1479 \mathrm{~m}, 1412 \mathrm{~m}$ (br.), $1355 \mathrm{~m}, 1150 \mathrm{~m}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.82$ (br. $\left.d, J=16.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(9)\right) ; 2.35(d d, J=15.0,7.0,1 \mathrm{H}-\mathrm{C}(5)) ; 2.48-2.62(m$, $\left.\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(9)\right) ; 2.62(d d, J=15.0,7.0,1 \mathrm{H}-\mathrm{C}(5)) ; 3.02(d d, J=13.0,7.0,1 \mathrm{H}-\mathrm{C}(2)) ; 3.24(m, \mathrm{H}-\mathrm{C}(6)) ; 3.27$ $(d d, J=13.0,5.1,1 \mathrm{H}-\mathrm{C}(2)) ; 4.57\left(A B, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.53(m, \mathrm{H}-\mathrm{C}(7)) ; 5.61(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)) ; 7.30(\mathrm{~m}, 5$ arom. H$)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz},\left(\mathrm{D}_{5}\right)\right.$ pyridine $): 1.74\left(d d d, J=16.5,2.2,2.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(9)\right) ; 2.31\left(d d, J=14.5,6.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(5)\right)$; $2.32\left(d m, J=16.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)\right) ; 2.90\left(d d, J=13.5,6.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 3.10(m, \mathrm{H}-\mathrm{C}(6)) ; 3.20(d d, J=13.5,5.1$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 5.48(\mathrm{~m}, \mathrm{H}-\mathrm{C}(7)) ; 5.55(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)) ; 7.40(\mathrm{~m}, 5$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.55 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 35.3(\mathrm{C}(1))$; $36.9(\mathrm{C}(9)$ or $\mathrm{C}(5)) ; 37.8(\mathrm{C}(9)$ or $\mathrm{C}(5)) ; 43.3(\mathrm{C}(6)) ; 50.0\left(\mathrm{C}(2)\right.$ or $\left.\mathrm{C}\left(1^{\prime}\right)\right) ; 50.2\left(\mathrm{C}(2)\right.$ or $\left.\mathrm{C}\left(1^{\prime}\right)\right) ; 127.3,128.1,128.4$ (arom. C); $130.1(\mathrm{C}(7)) ; 132.6(\mathrm{C}(8)) ; 137.4(s$, arom. C); 172.1 ($s, \mathrm{C}(4))$. EI-MS: $227\left(86, M^{+}\right), 136(37), 107(28), 91$ (100). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$ (227.306): C 79.3, H 7.5, N 6.2; found: C 79.1, H 7.7, N 6.1.
(-)-(1S,6R,I'S)-5,5-Dichloro-3-(l^{\prime}-phenylethyl)-3-azabicyclo[4.3.0]non-7-en-4-one (11). As described for 9, with (i-Pr) ${ }_{2} \mathrm{EtN}(40 \mathrm{ml}, 0.19 \mathrm{~mol}), 10(20 \mathrm{~g}, 0.1 \mathrm{~mol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ dichloroacetyl chloride ($21 \mathrm{ml}, 0.19 \mathrm{~mol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{ml}\right.$; addition within 8 h ; washing with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{ml})$, sat. aq. $\mathrm{NaHCO}_{3}(200 \mathrm{ml})$, and brine (200 $\mathrm{ml})$). FC (silica gel, t-BuOMe/hexane $1: 4$) gave $11(19 \mathrm{~g}, 61 \%)$. Low-melting solid M.p. $48-50^{\circ}\left(\mathrm{Et}_{2} \mathrm{O}\right) . R_{\mathrm{f}} 0.25$. $[\alpha]_{\mathrm{D}}^{20}=-67.8\left(c=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.60 \mathrm{~mm}, \mathrm{MeOH}): 194.0(7.4) ; 199.5(2.2) ; 214.0(14.8) ; 238.5(-5.8)$. IR (KBr): $1683(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.50\left(d, J=6.0,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.15(d m, J=12.1,1 \mathrm{H}-\mathrm{C}(9))$; $2.55(m, 1 \mathrm{H}-\mathrm{C}(9), \mathrm{H}-\mathrm{C}(1)) ; 3.15(d d, J=13.0,7.3,1 \mathrm{H}-\mathrm{C}(2)) ; 3.25(d d, J=13.0,7.0,1 \mathrm{H}-\mathrm{C}(2)) ; 3.88(d m$, $J=10.0, \mathrm{H}-\mathrm{C}(6)) ; 5.80(\mathrm{~m}, \mathrm{H}-\mathrm{C}(7)) ; 5.91\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.29-7.40\left(\mathrm{~m}, 5\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(90.6$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 15.1\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 33.8(\mathrm{C}(1)) ; 39.1(\mathrm{C}(9)) ; 44.5(\mathrm{C}(2)) ; 52.1\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 60.8(\mathrm{C}(6)) ; 86.3(\mathrm{C}(5)) ; 127.1$ (arom. C); 127.7, $127.8\left(\mathrm{C}(7)\right.$, arom. C); 128.2 (arom. C); 134.5 (C(8)); 139.3 (arom. C); 163.6 (C(4)). EI-MS: $309\left(3, M^{+}\right)$, 294 (3), 274 (85), 105 (100). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{NO}$ (305.183): C 61.9, H 5.5, N 4.5, Cl 22.9; found: C 61.8, H 5.4, N 4.4, Cl 22.9.
(-)-(1R,6S, $\left.I^{\prime} \mathrm{S}\right)-5,5-$ Dichloro-3-(l^{\prime}-phenylethyl)-3-azabicyclo[4.3.0]non-7-en-4-one (14). As described for 11, with ($\mathrm{i}-\mathrm{Pr})_{2} \mathrm{EtN}(1.04 \mathrm{ml}, 9.8 \mathrm{mmol}) \mathbf{1 3}(1 \mathrm{~g}, 5.0 \mathrm{mmol})$, and dichloroacetyl choride ($2 \mathrm{ml}, 9.8 \mathrm{mmol}$): $\mathbf{1 4}(800 \mathrm{mg}$, 52%). M.p. $97^{\circ}\left(\mathrm{Et}_{2} \mathrm{O}\right) \cdot[\alpha]_{\mathrm{D}}^{20}=-81.8(c=0.2, \mathrm{MeOH}) . \mathrm{CD}(c=3.24 \mathrm{~mm}, \mathrm{MeOH}): 226.0(-1.94) . \mathrm{IR}(\mathrm{KBr}): 1673$ $(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.51(\mathrm{~m}, 1 \mathrm{H}-\mathrm{C}(9)) ; 1.52\left(d, J=7.0,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.45(d d q, J=17.0,9.7$, $2.0,1 \mathrm{H}-\mathrm{C}(9)) ; 2.72(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 2.90(d d, J=13.6,5.9,1 \mathrm{H}-\mathrm{C}(2)) ; 3.55(d d, J=13.6,6.3,1 \mathrm{H}-\mathrm{C}(2)) ; 3.90(d m$, $J=10.0, \mathrm{H}-\mathrm{C}(6)) ; 5.71(\mathrm{~m}, \mathrm{H}-\mathrm{C}(7)) ; 5.78(m, \mathrm{H}-\mathrm{C}(8)) ; 6.00\left(q, J=7.0, \mathrm{H}-\mathrm{C}\left(l^{\prime}\right)\right) ; 7.29-7.35(\mathrm{~m}, 5 \mathrm{arom} . \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.9\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 33.6(\mathrm{C}(1)) ; 39.4(\mathrm{C}(9)) ; 44.6(\mathrm{C}(2)) ; 52.0\left(\mathrm{C}\left(1^{\prime}\right)\right.$ or $\left.\mathrm{C}(6)\right) ; 61.0\left(\mathrm{C}\left(1^{\prime}\right)\right.$ or $\mathrm{C}(6)) ; 86.0(\mathrm{C}(5)) ; 127.6,127.8$ (arom. C); 128.2 (C(7)); 128.4 (arom. C); 134.9 (C(8)); 139.2 (arom. C); 163.3 (C(4)). EI-MS: $309\left(4, M^{+}\right), 294$ (5), 274 (96), 105 (100). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{NO}$ (305.183): C 61.9, H 5.5, $\mathrm{Cl} 22.9, \mathrm{~N} 4.5$; found: $\mathrm{C} 62.0, \mathrm{H} 5.5, \mathrm{Cl} 22.8, \mathrm{~N} 4.5$.
(-)-(IS, $\left.6 \mathrm{R}, I^{\prime} \mathrm{S}\right)$-3-(I^{\prime}-Phenylethyl)-3-azabicyclo[4.3.0]non-7-en-4-one (17). $\mathrm{NH}_{4} \mathrm{Cl}(3.3 \mathrm{~g}, 61.97 \mathrm{mmol})$ was dissolved in a cold $\left(0^{\circ}\right)$ soln. of $11(3.18 \mathrm{~g}, 10.25 \mathrm{mmol})$ in dry $\mathrm{MeOH}(150 \mathrm{ml})$ with vigorous stirring. Then Zn powder ($6.5 \mathrm{~g}, 102.5 \mathrm{mmol}$) was added in portions over 50 min . The mixture was allowed to warm to r.t. and stirred for further 2 h , after which it was filtered. The filtrate was evaporated, the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, the resulting soln. washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the crude product purified by FC (silica gel, t-BuOMe/hexane $1: 1$): $17(2.01 \mathrm{~g}, 81 \%)$. White crystals. $R_{\mathrm{f}} 0.2$. M.p. $59^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$. $[\alpha]_{\mathrm{D}}^{20}=-85.0$ $\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=2.09 \mathrm{~mm}, \mathrm{MeOH}): 193.0(-3.6) ; 204.0(6.3) ; 221.5(-21.0) . \mathrm{IR}(\mathrm{KBr}): 1652(\mathrm{NCO})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.45\left(d, J=7.0,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.97\left(d m, J=16.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(9)\right) ; 2.23(d d, J=15.0,9.0$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)\right) ; 2.35(m, \mathrm{H}-\mathrm{C}(1)) ; 2.50\left(d d q, J=16.5,9.0,2.8, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(9)\right) ; 2.64\left(d d, J=15.0,6.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(5)\right) ; 2.82(d d$, $\left.J=13.0,9.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 2.95\left(d d, J=13.0,6.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 3.25(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6)) ; 5.55(d q, J=6.1,2.8, \mathrm{H}-\mathrm{C}(7))$; $5.66(d q, J=6.1,2.8, \mathrm{H}-\mathrm{C}(8)) ; 5.96\left(q, J=7.0, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.30(m, 5$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $16.1\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 35.5(\mathrm{C}(1)) ; 37.4(\mathrm{C}(9)$ or $\mathrm{C}(5)) ; 37.5(\mathrm{C}(5)$ or $\mathrm{C}(9)) ; 43.2(\mathrm{C}(6)) ; 44.9(\mathrm{C}(2)) ; 49.2\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 127.1,127.2$, 128.3 (arom. C); 129.7 (C(7)); 132.7 (C(8)); 140.6 (arom. C); 172.0 (C(4)). EI-MS: 241 (71, M^{+}), 105 (100). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}$ (241.333): C 79.6, H 7.9, N 5.8; found: C 79.8, H 7.9, N 5.8.
(-)-($\left.1 \mathrm{R}, 6 \mathrm{~S}, 1^{\prime} \mathrm{S}\right)$-3-(I^{\prime}-Phenylethyl)-3-azabicyclo[4.3.0]non-7-en-4-one (15) and (-)-(1R,5S,6S, $\left.1^{\prime} \mathrm{S}\right)-5-$ Chloro-3-(1'-phenylethyl)-3-azabicyclo[4.3.0/non-7-en-4-one (16). As described for 17 , from 14 ($1 \mathrm{~g}, 3.22 \mathrm{mmol}$), $\mathrm{Zn}(2.11 \mathrm{~g}, 32.3 \mathrm{mmol})$, and $\mathrm{NH}_{4} \mathrm{Cl}(1.03 \mathrm{~g}, 19.3 \mathrm{mmol}): 15\left(R_{\mathrm{f}} 0.4 ; 6.10 \mathrm{mg}, 78 \%\right)$ and $\mathbf{1 6}\left(R_{\mathrm{f}} 0.3 ; 170 \mathrm{mg}, 19 \%\right)$.

15: $[\alpha]_{\mathrm{D}}^{20}=-59.2(c=0.2, \mathrm{MeOH}) . \mathrm{CD}(c=3.23 \mathrm{~mm}, \mathrm{MeOH}): 207.0(-1.25) ; 220.0(-2.18) .1 \mathrm{R}(\mathrm{KBr}): 1654$ (NCO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.42(d m, J=18.0,1 \mathrm{H}-\mathrm{C}(9)) ; 1.51\left(d, J=7.2,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.25(d d$, $J=13.5,6.9,1 \mathrm{H}-\mathrm{C}(5)) ; 2.38(d d q, J=18.0,11.0,3.0,1 \mathrm{H}-\mathrm{C}(9)) ; 2.55(m, \mathrm{H}-\mathrm{C}(1)) ; 2.60(d d, J=13.5,6.0$, $1 \mathrm{H}-\mathrm{C}(5)) ; 2.87(d d, J=14.0,7.0,1 \mathrm{H}-\mathrm{C}(2)) ; 3.11(d d, J=14.0,4.9,1 \mathrm{H}-\mathrm{C}(2)) ; 3.20(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6)) ; 5.50(\mathrm{~m}$, $\mathrm{H}-\mathrm{C}(7)) ; 5.55(m, \mathrm{H}-\mathrm{C}(8)) ; 5.98\left(q, J=7.2, \mathrm{H} \sim \mathrm{C}\left(1^{\prime}\right)\right) ; 7.28-7.39(m, 5$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$15.8\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 35.5(\mathrm{C}(1)) ; 37.1(\mathrm{C}(9)$ or $\mathrm{C}(5)) ; 37.5(\mathrm{C}(5)$ or $\mathrm{C}(9)) ; 43.1(\mathrm{C}(6)) ; 44.9(\mathrm{C}(2)) ; 49.4\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 127.3,127.5$, 128.2 (arom. C); 130.3 (C(7)); 132.3 (C(8)); 140.7 (arom. C); 171.8 (C(4)). EI-MS: 241 ($76, M^{+}$), 226 (16), 105 (100).

16: M.p. (t-BuOMe/hexane) $112-114^{\circ} .[\alpha]_{D}^{20}=-41.2(c=0.4, \mathrm{MeOH}) . \mathrm{CD}(c=4.54 \mathrm{~mm}, \mathrm{MeOH}): 206.5$ (-1.37); 221.5 (-1.95). IR (KBr): $1658(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.25(d m, J=16.5,1 \mathrm{H}-\mathrm{C}(9)) ; 1.51$ $\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.35(d d, J=16.5,10.5,1 \mathrm{H}-\mathrm{C}(9)) ; 2.63(m, \mathrm{H}-\mathrm{C}(1)) ; 3.00(d d, J=13.1,6.0,1 \mathrm{H}-\mathrm{C}(2))$; $3.22(d d, J=13.1,6.2,1 \mathrm{H}-\mathrm{C}(2)) ; 3.56(m, \mathrm{H}-\mathrm{C}(6)) ; 4.62(d, J=6.0, \mathrm{H}-\mathrm{C}(5)) ; 5.63(m, \mathrm{H}-\mathrm{C}(7), \mathrm{H}-\mathrm{C}(8)) ; 5.97$ $\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.28-7.35(m, 5$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 15.6\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 34.5(\mathrm{C}(1)) ; 38.6$ (C(9)); 44.1 (C(2)); $50.4(\mathrm{C}(6)) ; 50.5\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 59.5(\mathrm{C}(5)) ; 127.7$ (arom. C); 127.8 (C(7)); 128.3 (arom. C); 133.4 (C(8)); 140.0 (arom. C); 166.8 (C(4)). EI-MS: $275\left(12, M^{+}\right), 240(100), 105$ (195). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClNO}$ (275.778): C 69.7, H 6.6, N 5.1, Cl 12.9; found: C 69.7, H 6.5, N 5.0, Cl 12.8.
($1 \mathrm{~S}, 5 \mathrm{R}, 6 \mathrm{R}, l^{\prime} \mathrm{S}$)- and ($1 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{R}, I^{\prime} \mathrm{S}$)-5-Methyl-3-(I^{\prime}-phenylethyl)-3-azabicyclol4.3.0/non-7-en-4-one (18a and 18b, resp.). To a vigorously stirred soln. of ($\mathbf{i}-\operatorname{Pr})_{2} \mathrm{NH}(1.53 \mathrm{ml}, 10.9 \mathrm{mmol})$ in dry THF (50 ml) under Ar at 0°, $1.6 \mathrm{~m} \mathrm{BuLi}(6.22 \mathrm{ml}, 9.96 \mathrm{mmol})$ was added slowly. After 30 min , the soln. was cooled to -79° and a soln. of 17 $(2.0 \mathrm{~g}, 8.3 \mathrm{mmol})$ in THF (20 ml) added. After 1 h , this mixture was added to Mel ($0.69 \mathrm{ml}, 11 \mathrm{mmol}$) in THF $(15 \mathrm{ml})$ at -70°. Then the temp. was slowly raised to r.t. overnight. Sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(50 \mathrm{ml})$ was added, the org. phase washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the crude product purified by FC (silica gel, t-BuOMe/hexane $\left.1: 1, R_{\mathrm{f}} 0.30\right): 1.73 \mathrm{~g}(82 \%)$ of $\mathbf{1 8 a} / \mathbf{1 8 b} 2: 1$. A pure sample of $\mathbf{1 8 a}$ was obtained by HPLC (LiChrosorb ${ }^{\circledR}$ Si 60, hexane/AcOEt $1: 1,10 \mathrm{ml} / \mathrm{min}$).

18a: Colourless oil. $[\alpha]_{\mathrm{D}}^{20}=-188.6(c=0.3, \mathrm{MeOH}) . \mathrm{CD}(c=2.54 \mathrm{~mm}, \mathrm{MeOH}): 195.0(-11.6) ; 206.5(2.5)$; 221.5 (-17.6). IR (film): 1655 (NCO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.26(d, J=7.1, \mathrm{Me}-\mathrm{C}(5)) ; 1.45(d, J=7.3$, $\left.3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.20(d m, J=13.5,1 \mathrm{H}-\mathrm{C}(9)) ; 2.54\left(d q, J_{\mathrm{gem}}=7.1, J(5,6)=7.1, \mathrm{H}-\mathrm{C}(5)\right) ; 2.63-2.73(m, \mathrm{H}-\mathrm{C}(9)$, $\mathrm{H}-\mathrm{C}(1)) ; 2.81\left(d d, J=13.0,1.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 2.98\left(d d, J=13.0,4.5, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 3.21(m, \mathrm{H}-\mathrm{C}(6)) ; 5.61(d q$, $J=5.9,2.6, \mathrm{H}-\mathrm{C}(7)) ; 5.76(\mathrm{dq}, J=5.9,2.6, \mathrm{H}-\mathrm{C}(8)) ; 5.97\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.25-7.35(m, 5$ arom. H$)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.5(\mathrm{Me}-\mathrm{C}(5)) ; 16.3\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 34.2(\mathrm{C}(1)) ; 38.5(\mathrm{C}(5)) ; 39.7(\mathrm{C}(9)) ; 45.5(\mathrm{C}(2)) ; 49.1$ $\left(\mathrm{C}(6)\right.$ or $\left.\mathrm{C}\left(1^{\prime}\right)\right) ; 49.6\left(\mathrm{C}(6)\right.$ or $\left.\mathrm{C}\left(1^{\prime}\right)\right) ; 127.1,127.2,128.4$ (arom. C); 129.3 (C(7)); $132.0(\mathrm{C}(8)) ; 140.9$ (arom. C); 173.8 (C(4)). EI-MS: 255 ($72, M^{+}$), $240(17), 105$ (100).

18b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; from 18a/18b): $1.30(d, J=7.4, \mathrm{Me}-\mathrm{C}(5)) ; 1.45\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right.$); $1.89(d m, J=17.0,1 \mathrm{H}-\mathrm{C}(9)) ; 2.10(d q, J=11.0,7.4, \mathrm{H}-\mathrm{C}(5)) ; 2.1-2.2(\mathrm{H}-\mathrm{C}(1)) ; 2.40(d d d d, J=17.0,10.0,5.0$, $2.0,1 \mathrm{H}-\mathrm{C}(9)) ; 2.60-2.68(\mathrm{H}-\mathrm{C}(1)$ or $\mathrm{H}-\mathrm{C}(6)) ; 2.88(d, J=10.0,11.0,1 \mathrm{H}-\mathrm{C}(2)) ; 2.99(d d, J=6.0,11.0$, $1 \mathrm{H}-\mathrm{C}(2)) ; 5.61(\mathrm{~m}, \mathrm{H}-\mathrm{C}(7)) ; 5.76(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)) ; 5.97\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.25-7.35(\mathrm{~m}, 5$ arom. H$)$.
(-)-(1S, $\left.5 \mathrm{R}, 6 \mathrm{R}, 7 \mathrm{R}, 8 \mathrm{~S}, 1^{\prime} \mathrm{S}\right)-$ and ($-1-\left(1 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{R}, 7 \mathrm{R}, 8 \mathrm{~S}, 1^{\prime} \mathrm{S}\right)-7,8-$ Epoxy-5-methyl-3-(1'-phenylethyl)-3-azabicyclo[4.3.0]nonan-4-one (19a and 19b, resp.). See [45]: A soln. of $\mathbf{1 8 a} / \mathbf{1 8 b}(3.7 \mathrm{~g}, 14.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added to a cooled (ice-bath), well stirred suspension of 3 -chloroperbenzoic acid ($3.0 \mathrm{~g}, 17.6 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(1.9 \mathrm{~g}, 22.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{ml})$, at a rate such that the temp. was kept between 5 and 10°. After the addition, the mixture was kept at -18° overnight. A $10 \% \mathrm{Na}_{2} \mathrm{SO}_{3} \mathrm{soln}$. (50 ml) was added, the org. layer washed with 5% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln., the combined aq. phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$, the combined org. phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue chromatographed (silica gel, hexane $/ t$ - $\left.\mathrm{BuOMe} 1: 1\right): 19 \mathrm{a}\left(R_{\mathrm{f}} 0.35\right)$ and 19b ($R_{\mathrm{f}} 0.40$) in 81% combined yield ($19 \mathrm{a} / 19 \mathrm{~b} 3: 1$).

19a: Colourless oil. $[\alpha]_{D}^{20}=-128.0\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.33 \mathrm{~mm}, \mathrm{MeOH}): 206.5(-9.7) ; 221.5(-28.0)$. IR (KBr): $1654(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.32(d, J=6.8, \mathrm{Me}-\mathrm{C}(5)) ; 1.50\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right.$); $1.65\left(d d d, J_{\text {gem }}=14.0, J(9,1)=7.0, J(9,8)=2.5,1 \mathrm{H}-\mathrm{C}(9)\right) ; 2.18\left(d d, J_{\text {gem }}=14.0, J(9,1)=8.8,1 \mathrm{H}-\mathrm{C}(9)\right) ; 2.31$ $(m, \mathrm{H}-\mathrm{C}(1)) ; 2.55(d q, J=8.8,6.8, \mathrm{H}-\mathrm{C}(5)) ; 2.75(t, J=8.8, \mathrm{H}-\mathrm{C}(6)) ; 2.83\left(d d, J_{\mathrm{gem}}=14.5, J(2,1)=3.0\right.$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 2.92\left(d d, J_{\mathrm{gem}}=14.5, J(2.1)=4.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.44(d, J=2.5, \mathrm{H}-\mathrm{C}(7)) ; 3.49(t, J=2.5, \mathrm{H}-\mathrm{C}(8))$; $5.97\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.25-7.35\left(m, 5\right.$ arom. H). EI-MS: $271\left(85, M^{+}\right), 256(27), 180(27), 105(100)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$ (271.359): $\mathrm{C} 75.2, \mathrm{H} 7.8, \mathrm{~N} 5.2$; found: $\mathrm{C} 74.8, \mathrm{H} 8.0, \mathrm{~N} 5.1$.

19b: Solid. M.p. $104-106^{\circ} .[\alpha]_{\mathrm{D}}^{20}=-70.9\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.28 \mathrm{~mm}, \mathrm{MeOH}): 206.5(-7.6) ; 221.0$ (-19.7). IR (KBr): $1646(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.38(d, J=6.2, \mathrm{Me}-\mathrm{C}(5)) ; 1.44(d, J=7.3,3$ $\left.\mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.59(d, J=12.0,1 \mathrm{H}-\mathrm{C}(9)) ; 1.85(m, \mathrm{H}-\mathrm{C}(1), 1 \mathrm{H}-\mathrm{C}(9)) ; 2.03(d t, J=10.0, J(6,7)=2.0, \mathrm{H}-\mathrm{C}(6))$; $2.68(d q, J=10.0,6.2, \mathrm{H}-\mathrm{C}(5)) ; 2.79\left(d d, J_{\mathrm{gem}}=13.2, J=5.8, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 2.96\left(d d, J_{\mathrm{gem}}=13.2, J(1,2)=10.0\right.$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.54(m, \mathrm{H}-\mathrm{C}(8)) ; 3.56(d d, J(7,8)=2.8, J=2.0, \mathrm{H}-\mathrm{C}(7)) ; 5.92\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.28-7.32(m, 5$ arom. H). FAB-MS (thioglycerol): $272\left(66, M \mathrm{H}^{+}\right), 168(41), 105(100)$. Anal. caic. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}$ (271.359): C 75.2, H 7.8, N 5.2; found: C 74.7, H 8.2, N 5.0.
 (20). To the stirred soln. of $\mathrm{Et}_{2} \mathrm{NH}(0.11 \mathrm{ml}, 0.81 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ under Ar in an ice-bath, 1.6 m BuLi in hexane ($0.6 \mathrm{ml}, 0.74 \mathrm{mmol}$) was added with a syringe. After 10 min stirring, the mixture was allowed to reach r.t. and $19 \mathrm{a}(200 \mathrm{mg}, 0.74 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{ml})$ added dropwise. The yellow mixture was stirred overnight at $\mathrm{r} . \mathrm{t}$, after
which time sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(6 \mathrm{ml})$ was added. The $\mathrm{Et}_{2} \mathrm{O}$ phase was separated, the aq. phase extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 10 \mathrm{ml})$, the combined org. phase washed successively with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$, and sat. NaHCO_{3} soln, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the crystalline solids recrystallised from $\mathrm{Et}_{2} \mathrm{O}: \mathbf{2 0}$. Colourless crystals $(180 \mathrm{mg}, 80 \%)$. M.p. $141-143^{\circ} \cdot[\alpha]_{\mathrm{D}}^{20}=-132.0\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.32 \mathrm{mM}, \mathrm{MeOH}): 194.5(-3.6) ; 210.0$ $(+10.7) ; 225.5(-15.6)$. IR (K Br$): 1612(\mathrm{NCO}), 3336(\mathrm{OH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.32(s, \mathrm{Me}-\mathrm{C}(2)) ; 1.43$ $\left(d, J=7.2,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.54(d, J=6.5,1 \mathrm{H}-\mathrm{C}(9)) ; 1.92\left(d d d, J=14.0,7.5,2.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(7)\right) ; 1.97(t, J=6.5$, $\mathrm{H}-\mathrm{C}(1)) ; 2.16\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(7)\right) ; 2.53\left(d d, J=12.5,3.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)\right) ; 2.70(m, \mathrm{H}-\mathrm{C}(6)) ; 2.85(d d, J=12.5,2.2$, $\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(5)$); 3.03 (br. s, OH); $4.25(t, J=6.3, \mathrm{H}-\mathrm{C}(8)) ; 6.11\left(q, J=7.2, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.20-7.35(m, 5$ arom. H). EI-MS: 271 (37, M^{+}), 254 (50), $167(51), 152(47), 105(100)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}(271.359)$: C 75.2, H 7.8, N 5.2; found: C 74.9, H 8.1, N 5.1.
(-)-(1S,2S,6S,9R,1'S)-2-Methyl-4-(1^{\prime}-phenylethyl)-4-azatricyclo[4.3.0.0.9.9]nonan-3,8-dione (21). A soln. of DMSO ($2.8 \mathrm{ml}, 37.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was rapidly added under Ar to a cooled (-60°) soln. of oxalyl chloride ($1.5 \mathrm{ml}, 17.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. After 45 min , a soln. of $\mathbf{2 0}(1.53 \mathrm{~g}, 5.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added at such a rate that the temp. was kept between -50 and -60°. Then the mixture was stirred for $45 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}$ $(5.24 \mathrm{ml})$ added dropwise while keeping the temp. below -50°, and stirring continued for 5 min . The mixture was allowed to warm to r.t. and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ added. The aq. layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$, the combined org. extract washed with brine (10 ml), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the crude oil purified by FC (silica gel, AcOEt/hexane 1:1): $21(1.46 \mathrm{~g}, 95 \%)$. White solid. M.p. $109-111^{\circ}$. $\left.[\alpha]_{\mathrm{D}}^{20}=-55.8\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}\right) \mathrm{CD}(c=1.23$ $\mathrm{mm}, \mathrm{MeOH}) ; 206.5(27.2) ; 231.5(-7.5) ; 297.5(-2.9)$. IR (KBr): $1635(\mathrm{NCO}), 1721(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.42(s, \mathrm{Me}-\mathrm{C}(2)) ; 1.42\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.90(d d, J=18.0,2.7,1 \mathrm{H}-\mathrm{C}(7)) ; 2.00(d, J=5.5$, $\mathrm{H}-\mathrm{C}(9)) ; 2.47(d d, J=7.0,5.5, \mathrm{H}-\mathrm{C}(1)) ; 2.65(d d d, J=18.0,12.0,1.8,1 \mathrm{H}-\mathrm{C}(7)) ; 2.68(d d, J=12.0,3.0$, $1 \mathrm{H}-\mathrm{C}(5)) ; 2.85(m, \mathrm{H}-\mathrm{C}(6)) ; 3.10(d d, J=12.0,2.1,1 \mathrm{H}-\mathrm{C}(5)) ; 6.10\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.28-7.39(m, 5$ arom. H). FAB-MS (thioglycerol): $270\left(76, M \mathrm{H}^{+}\right), 166(50), 105(100)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ (269.343): C 75.8, H 7.1, N 5.2; found: C 75.5, H 7.2, N 5.2.
(-)-(1S,2S,6R,7S,9R, $\left.l^{\prime} \mathrm{S}\right)-2,7-$ Dimethyl-4-(1^{\prime}-phenylethyl)-4-azatricyclo[4.3.0.0 ${ }^{2.9}$]nonane-3,8-dione (22). A soln. of $21(1.4 \mathrm{~g}, 5.2 \mathrm{mmol})$ in THF (8 ml), hexamethylphosphoramide (HMPA; $0.9 \mathrm{ml}, 5.2 \mathrm{mmol}$), and MeI $(0.64 \mathrm{ml}, 10.4 \mathrm{mmol})$ were added successively to a soln. of LDA $(6.24 \mathrm{mmol})$ in THF (50 ml) at -80°. The temp. was allowed to reach -30° and then the mixture stirred for 2 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. (10 $\mathrm{ml})$, the aq. layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{ml})$, the org. phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the oil submitted to FC (silica gel, AcOEt/hexane $1: 1, R_{\mathrm{f}} 0.6$): $22\left(1.3 \mathrm{~g}, 90 \%\right.$). Colourless crystals. M.p. 113°. $[\alpha]_{D}^{20}=-35.4\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.23 \mathrm{~mm}, \mathrm{MeOH}) ; 207.5(24.5) ; 231.0(-7.7) ; 302.0(-1.9) . \mathrm{IR}(\mathrm{KBr}):$ $1628(\mathrm{NCO}), 1717(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.22(d, J=7.9, \mathrm{Me}-\mathrm{C}(7)) ; 1.41\left(d, J=7.5,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$; $1.42(s, \mathrm{Me}-\mathrm{C}(2)) ; 1.91(d q, J=7.9,2.5, \mathrm{H}-\mathrm{C}(7)) ; 2.05(d, J=5.5, \mathrm{H}-\mathrm{C}(9)) ; 2.34(d q, J=7.8,2.5, \mathrm{H}-\mathrm{C}(6)) ; 2.40$ $(d d, J=7.8,5.5, \mathrm{H}-\mathrm{C}(1)) ; 2.73(d d, J=12.2,3.0,1 \mathrm{H}-\mathrm{C}(5)) ; 3.09(d d, J=12.2,2.5,1 \mathrm{H}-\mathrm{C}(5)) ; 6.05(q, J=7.5$, $\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$); $7.25-7.40\left(m, 5\right.$ arom. H). FAB-MS (thioglycerol): $284\left(50, M \mathrm{H}^{+}\right), 180(42), 105$ (100). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$ (203.370): C 76.3, H 7.5, N 4.9; found: C 76.1, H 7.7, H 4.9.
(-)-(1R,5R,6R,9S, $\left.l^{\prime} \mathrm{S}\right)-\quad$ and (-)-(1R,5S,6R,9S, $\left.l^{\prime} \mathrm{S}\right)-5,9-$ Dimethyl-3-(l'-phenylethyl)-3-azabicyclo-[4.3.0]nonane-4,8-dione (23a and 23b, resp.). Procedure a [37]: A mixture of $22(311 \mathrm{mg}, 1.1 \mathrm{mmol})$ and $\mathrm{Zn}(1.7 \mathrm{~g})$ in $\mathrm{AcOH}(50 \mathrm{ml})$ was heated to reflux for $20 \mathrm{~h} . \mathrm{Zn}$ was filtered off, $\mathrm{H}_{2} \mathrm{O}$ added, and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$. FC (silica gel, AcOEt/hexane 3:2) gave $23 \mathrm{a}\left(R_{\mathrm{f}} 0.6 ; 71 \mathrm{mg}, 22 \%\right.$) and $\mathbf{2 3 b}\left(R_{\mathrm{f}} 0.4 ; 154 \mathrm{mg}, 51 \%\right)$.

23a: Solid. M.p. 87° (AcOEt/pentane). $[\alpha]_{D}^{20}=-206.7\left(c=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.24 \mathrm{~mm}, \mathrm{MeOH}): 204.0$ $(-16.7) ; 209.5(-15.2) ; 220.0(-28.2)$. IR (KBr): $1655(\mathrm{NCO}), 1737(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.10(d$, $J=6.0, \mathrm{Me}-\mathrm{C}(9)) ; 1.21(d, J=6.0, \mathrm{Me}-\mathrm{C}(5)) ; 1.48\left(d, J=6.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.07\left(d d d, J_{\mathrm{gem}}=17.0, J(7,6)=10.0\right.$, $\left.J(7,9)=2.0, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(7)\right) ; 2.20(m, \mathrm{H}-\mathrm{C}(9), \mathrm{H}-\mathrm{C}(1)) ; 2.32\left(\mathrm{dd}, J_{\mathrm{gem}}=17.0, J(7.6)=9.0, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(7)\right) ; 2.65$ (quint., $J=6.0, \mathrm{H}-\mathrm{C}(5)) ; 2.81(d d d d, J(6,1)=J(6,7 \mathrm{a})=10.0, J(6.7 \mathrm{~b})=9.0, J(6,5)=6.5, \mathrm{H}-\mathrm{C}(6)) ; 2.95\left(d d, J_{\mathrm{gem}}=18.0\right.$, $\left.J(2 \mathrm{ax}, 1)=2.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.15\left(d d, J_{\mathrm{gem}}=18.0, J(2 \mathrm{eq}, 1)=6.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 6.08\left(q, J=6.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.22-7.35$ ($m, 5$ arom. H). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{C}_{6} \mathrm{D}_{6} 3: 2\right.$): $0.96(d, J=7.1, \mathrm{Me}-\mathrm{C}(9)$); $1.09(d, J=7.0, \mathrm{Me}-\mathrm{C}(5)$); $1.29\left(d, J=7.0,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.87(d d d d, J(1,6)=10.0, J(1,9)=7.0, J(1,2 \mathrm{eq})=5.2, J(1,2 \mathrm{ax})=2.0, \mathrm{H}-\mathrm{C}(1)) ; 1.96$ $\left(d d d, J_{\mathrm{gem}}=17.8, J(7 \mathrm{a}, 6)=10.0, J(7 \mathrm{a}, 9)=2.0, \mathrm{H}_{\mathrm{a}}-\mathrm{C}(7)\right) ; 2.04(d q, J(9,1)=J(9, M e)=7.0, J(9,7 \mathrm{a})=2.0$, $\mathrm{H}-\mathrm{C}(9))$; 2.14 (dd, $\left.J_{\text {gem }}=17.8, J(7 \mathrm{~b}, 6)=9.0, \mathrm{H}_{\mathrm{b}}-\mathrm{C}(7)\right) ; 2.34$ (quint., $J=6.5, \mathrm{H}-\mathrm{C}(5)$); 2.44 (ddt, $J(6,1)=J(6,7 \mathrm{a})=10.0, J(6,7 \mathrm{~b})=9.0, J(6,5)=6.5, \mathrm{H}-\mathrm{C}(6)) ; 2.71\left(d d, J_{\mathrm{gem}}=13.5, J(2 \mathrm{ax}, 1)=2.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right)$; $2.82\left(d d, J_{\mathrm{gem}}=13.5, J(2 \mathrm{eq}, 1)=5.2, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 5.72\left(q, J=7.0, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.80-7.10(\mathrm{~m}, 5$ arom. H$) .{ }^{13} \mathrm{C} \cdot \mathrm{NMR}$ ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 13.4 ($\left.\mathrm{Me}-\mathrm{C}(5), \mathrm{Me}-\mathrm{C}(9)\right) ; 16.5\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 35.2(\mathrm{C}(6)) ; 38.3(\mathrm{C}(5)) ; 38.9(\mathrm{C}(7)) ; 41.1$ (C(9) or $\mathrm{C}(1)) ; 43.3(\mathrm{C}(2)) ; 46.2(\mathrm{C}(1)$ or $\mathrm{C}(9)) ; 49.5\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 127.0,127.1,128.5,128.6,140.5$ (arom. C); $173.3(\mathrm{C}(4)) ; 215.9$ (C(8)). EI-MS: $285\left(60, M^{+}\right), 270(21), 120(27), 105(100)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}(285.386)$: C 75.8, H 8.1, N 4.9; found: C 76.0, H 8.3, N 4.7 .

23b: Colourless oil. $[\alpha]_{\mathrm{D}}^{20}=-86.0\left(c=1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=2.18 \mathrm{~mm}, \mathrm{MeOH}): 205.5(-6.4) ; 221.0(-19.9)$. IR (film): 1653 (NCO), $1741(\mathrm{CO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.96(d, J=7.0, \mathrm{Me}-\mathrm{C}(9)) ; 1.38(d, J=6.1$, $\mathrm{Me}-\mathrm{C}(5)) ; 1.50\left(d, J=7.2,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.80(m, J(1,6)=J(1,9)=J(1,2 \mathrm{ax})=9.5, J(1,2 \mathrm{eq})=6.0, \mathrm{H}-\mathrm{C}(1)) ; 2.02$ $(m, J=9.5,7.2, \mathrm{H}-\mathrm{C}(9)) ; 2.18-2.30(m, \mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6), 1 \mathrm{H}-\mathrm{C}(7)) ; 2.52\left(d d, J_{\mathrm{gcm}}=18.0, J(7,6)=7.9,1\right.$ $\mathrm{H}-\mathrm{C}(7)) ; 3.01\left(d d, J_{\mathrm{gem}}=13.0, J(2 \mathrm{ax}, 1)=9.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.25\left(d d, J_{\mathrm{gem}}=13.0, J(2 \mathrm{eq}, 1)=6.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 6.03$ $\left(q, J=7.2, \mathrm{H}-\mathrm{C}\left(\mathrm{l}^{\prime}\right)\right) ; 7.26-7.38(\mathrm{~m}, 5$ arom. H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.1(\mathrm{Me}-\mathrm{C}(5)$ or $\mathrm{Me}-\mathrm{C}(9))$; $14.8(\mathrm{Me}-\mathrm{C}(9)$ or $\mathrm{Me}-\mathrm{C}(5)) ; 15.8\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 37.4(\mathrm{C}(6)) ; 40.9(\mathrm{C}(5)) ; 41.8(\mathrm{C}(9)$ or $\mathrm{C}(1)) ; 42.7(\mathrm{C}(7)) ; 43.8(\mathrm{C}(2))$; $46.4(\mathrm{C}(1)$ or $\mathrm{C}(9)) ; 50.0\left(\mathrm{C}\left(1^{\prime}\right)\right.$); 127.2, 127.3, 127.5, 140.3 (arom. C); $173.2(\mathrm{C}(4)) ; 217.3(\mathrm{C}(8))$. EI-MS: 285 (74, M^{+}), $270(26), 194(23), 120(25), 105$ (100). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2}(285.386)$: C 75.8, H 8.1, N 4.9; found: C 75.3, H 8.0, N 4.8.

Procedure b [46]: To a soln. of 22 ($35 \mathrm{mg}, 0.12 \mathrm{mmol}$) in THF/DMPU (3,4,5,6-tetrahydro-1,3-dimethylpyrim-idin-2($1 H$)-one) $9: 1(4 \mathrm{ml}), \mathrm{SmI}_{2}(0.1 \mathrm{~m}$ in THF) was added dropwise at r.t. under Ar, until the purple colour persisted (3 ml). After 5 min , the mixture was quenched with aq. sat. NaHCO_{3} soln. (1 ml), the aq. layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$, the combined org. extract washed with water $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the residue purified: 23a/23b ($23 \mathrm{mg}, 67 \%$) 1:1.

Procedure c [47]: To a soln. of $\mathbf{2 2}(80 \mathrm{mg}, 0.27 \mathrm{mmol})$ in benzene (5 ml$)$ under $\mathrm{Ar}, \mathrm{Bu}_{3} \mathrm{SnH}(0.11 \mathrm{ml}, 0.41 \mathrm{mmol})$ was added over 1 min and AIBN ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$) in one portion. The mixture was lowered into a bath preheated to 100° and heated to reflux for 3 h , after which it was cooled and evaporated. The crude product was purified as above: 23a/23b 5:1 ($50 \mathrm{mg}, 65 \%$).
(-)-(1R,5R,6R,9S, $\left.1^{\prime} \mathrm{S}\right)-5,9-$ Dimethyl-3-(l'-phenylethyl) spiro[[3]azabicyclo[4.3.0]nonane-8, $2^{\prime \prime}-[1,3] d i-$ thiane J-4-one (24). Propan-1,3-dithiol ($0.05 \mathrm{ml}, 0.5 \mathrm{mmol}$) was added to a soln. of 23a ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(6 \mathrm{ml})$. After cooling to $0^{\circ}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{ml})$ was added. After 6 h , the mixture was washed with $7 \% \mathrm{aq}$. KOH soln., water, and brine, the org. phase evaporated, and the residue purified by prep. TLC (silica gel, AcOEt/hexane 2:3): 24 ($107 \mathrm{mg}, 81 \%$). Oil $R_{\mathrm{f}} 0.5 .[\alpha]_{\mathrm{D}}^{20}=-32.3\left(c=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=2.03 \mathrm{~mm}, \mathrm{MeOH})$: $220.5(-28.1)$. IR (film): $1655(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.14(d, J=7.0, \mathrm{Me}-\mathrm{C}(9)) ; 1.17(d, J=6.5$, $\mathrm{Me}-\mathrm{C}(5)) ; 1.49\left(d, J=6.9,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.49(d d, J=12.8,11.0,1 \mathrm{H}-\mathrm{C}(7)) ; 1.77(m, \mathrm{H}-\mathrm{C}(9)) ; 1.85(\mathrm{~m}$, $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(4^{\prime \prime}\right)$); $2.11\left(m, \mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(4^{\prime \prime}\right)\right.$) ; 2.50 (quint., $J=7.0, \mathrm{H}-\mathrm{C}(5)$); $2.66-2.77\left(m, \mathrm{H}-\mathrm{C}(6), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(3^{\prime \prime}\right)\right.$, $\left.\mathrm{H}_{e q}-\mathrm{C}\left(5^{\prime \prime}\right)\right) ; 2.80(m, 1 \mathrm{H}-\mathrm{C}(7), 1 \mathrm{H}-\mathrm{C}(2)) ; 2.92(d d, J=13.8,4.3,1 \mathrm{H}-\mathrm{C}(2)) ; 2.99(d d d, J=14.1,12.1,2.9$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(5^{\prime \prime}\right)\right) ; 3.08\left(d d d, J=14.0,12.0,3.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 6.05\left(q, J=6.9, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.27-7.45(m, 5$ arom. H$)$. EI-MS: 375 (45, M^{+}), 270 (29), 149 (71), 105 (100).
(-)-(1R,5S,6R,9S, $\left.1^{\prime} \mathrm{S}\right)$-5,9-Dimethyl-3-(1'-phenylethyl)spiro[[3]azabicyclo[4.3.0]nonane-8,2"-[1,3]dithiolane]-4-one (26). As described for 24, with ethane-1,2-dithiol ($0.05 \mathrm{ml}, 0.5 \mathrm{mmol}$), 23b ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), $\mathrm{CHCl}_{3}(6 \mathrm{ml})$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{ml}): 26(107 \mathrm{mg}, 81 \%)$. Solid. $R_{\mathrm{f}} 0.5$. M.p. $100-102^{\circ} .[\alpha]_{\mathrm{D}}^{20}=-58.6(c=0.9$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.57 \mathrm{~mm}, \mathrm{MeOH}): 208.0(-5.7) ; 222.5(-16.9) ; 252.0(1.2)$. IR (KBr): 1653 (NCO). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 0.90(d, J=6.6, \mathrm{Me}-\mathrm{C}(9)) ; 1.19(d, J=6.8, \mathrm{Me}-\mathrm{C}(5)) ; 1.43\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.40(\mathrm{~m}$, $\mathrm{H}-\mathrm{C}(1)) ; 1.84(d q, J=10.0,6.6, \mathrm{H}-\mathrm{C}(9)) ; 1.92(d d, J=12.5,10.2,1 \mathrm{H}-\mathrm{C}(7)) ; 2.00(m, \mathrm{H}-\mathrm{C}(6)) ; 2.19(m$, $\mathrm{H}-\mathrm{C}(5)) ; 2.57(d d, J=12.5,7.3,1 \mathrm{H}-\mathrm{C}(7)) ; 2.85\left(d d, J=13.7,10.6, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.10\left(d d, J=13.7,6.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right)$; 3.20-3.30 $\left(m, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right) ; 5.95\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right.$); 7.27-7.45 ($m, 5$ arom. H). EI-MS: $361\left(81, M^{+}\right), 105(100)$.
(-)-(1R,5S,6R,9S, $\left.I^{\prime} \mathrm{S}\right)-5,9-$ Dimethyl-3-(1'-phenylethyl) spiro[/3]azabicyclo[4.3.0]nonane-8, $2^{\prime \prime}-[1,3] d i-$ thiane J-4-one (27). As described for 24, with propane-1,3-dithiol ($0.9 \mathrm{ml}, 8.9 \mathrm{mmol}$), 23b ($1.5 \mathrm{~g}, 5.3 \mathrm{mmol}$), CHCl_{3} $(70 \mathrm{ml})$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{ml} ; 36 \mathrm{~h}): 27(1.54 \mathrm{~g}, 77 \%)$. Solid. $R_{\mathrm{f}} 0.5$. M.p. $137-140^{\circ}(\mathrm{AcOEt} /$ hexane $) .[\alpha]_{\mathrm{D}}^{20}=-20.0$ $\left(c=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.68 \mathrm{~mm}, \mathrm{MeOH}): 202.5(-10.2) ; 224.0(-19.9) ; 253.5(0.7)$. IR (KBr): 1654 and 1643 (NCO). ${ }^{\mathrm{l}} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.95(d, J=6.5, \mathrm{Me}-\mathrm{C}(9)) ; 1.21(d, J=6.9, \mathrm{Me}-\mathrm{C}(5)) ; 1.46(d, J=7.3,3$ $\left.\mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.68(d d, J=12.6,8.7,1 \mathrm{H}-\mathrm{C}(7)) ; 1.70(m, \mathrm{H}-\mathrm{C}(9)) ; 1.75(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 1.84\left(\mathrm{~m}, 1 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 2.11(\mathrm{~m}$, $\left.1 \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 2.18(m, \mathrm{H}-\mathrm{C}(6)) ; 2.23(d q, J=10.1,6.9, \mathrm{H}-\mathrm{C}(5)) ; 2.74\left(m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(5^{\prime \prime}\right), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 2.86(d d$, $\left.J=12.8,9.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.00\left(d d d, J=14.2,12.0,3.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}\right)\right.$ or $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(5^{\prime \prime}\right)\right) ; 3.06-3.15\left(m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2), 1\right.$ $\mathrm{H}-\mathrm{C}(7), \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(5^{\prime \prime}\right)$ or $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}\right)\right) ; 5.95\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.27-7.35\left(m, 5\right.$ arom. H). EI-MS: $375\left(56, M^{+}\right)$, 105 (100).
(+)-(1R,5R,6R,9S, $\left.l^{\prime} \mathrm{S}\right)-5,9-$ Dimethyl-3-(I^{\prime}-phenylethyl) spirol[3]azabicyclo[4.3.0]nonane-8, $2^{\prime \prime}-[1,3] d i-$ thiane] (25). Under Ar, LiAlH_{4} ($30 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added in 1 portion to a soln. of $24(107 \mathrm{mg}, 0.28 \mathrm{mmol})$ in THF (4 ml). The mixture was heated to reflux for 2 h , the soln. then allowed to cool to r.t., and aq. sat. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ soln. (0.8 ml) added. The resulting solid was filtered off and the solvent evaporated: pure $\mathbf{2 5}(91 \mathrm{mg}, 90 \%$). Oil. $[\alpha]_{\mathrm{D}}^{20}=+24.0\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.36 \mathrm{~mm}, \mathrm{MeOH}): 193.5(-15.2) ; 228.5(-6.9) ; 251.5(1.8) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.81(d, J=6.0, \mathrm{Me}-\mathrm{C}(9)) ; 1.15(d, J=7.0, \mathrm{Me}-\mathrm{C}(5)) ; 1.34\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.83-2.12$ $(m, 8 \mathrm{H}) ; 2.38-2.55(\mathrm{~m}, 3 \mathrm{H}) ; 2.68-2.78(\mathrm{~m}, 3 \mathrm{H}) ; 2.96(d d d, J=14.0,11.0,3.0,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)$ or $\mathrm{H}-\mathrm{C}(4)) ; 3.12(d d d$, $J=14.0,3.0,3.0,1 \mathrm{H}, \mathrm{H}-\mathrm{C}(2)$ or $\mathrm{H}-\mathrm{C}(4)) ; 3.39\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.27-7.40(\mathrm{~m}, 5$ arom. H). EI-MS: 361 (8 , M^{+}), 346 (24), 286 (17), 258 (100), 105 (77).
($1 \mathrm{R}, 5 \mathrm{~S}, 6 \mathrm{~S}, 9 \mathrm{~S}, I^{\prime} \mathrm{S}$)-5,9-Dimethyl-3-(I^{\prime}-phenylethyl) spiro[[3]azabicyclo[4.3.0]nonane-8,2"-[1,3]dithiolane] (28). As described for 25, from 26: Oil. $\mathrm{CD}(c=2.16 \mathrm{~mm}, \mathrm{MeOH}): 192.5(-8.5) ; 248.5(2.6) .{ }^{1} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.80(d, J=6.6, \mathrm{Me}-\mathrm{C}(5)) ; 0.90(d, J=6.8, \mathrm{Me}-\mathrm{C}(9)) ; 1.46\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.48-1.60(m$, $\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(5)\right) ; 2.00\left(d d, J=12.1,4.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 2.15(m, \mathrm{H}-\mathrm{C}(1)) ; 2.30(d d, J=13.6,2.8,1$ $\mathrm{H}-\mathrm{C}(7)) ; 2.45(d q, J=11.5,6.7, \mathrm{H}-\mathrm{C}(9)) ; 2.61(d d, J=13.6,8.0,1 \mathrm{H}-\mathrm{C}(7)) ; 2.73\left(d m, J=12.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 2.91$ $\left(d m, J=11.5, \mathrm{H}_{\mathrm{cq}}-\mathrm{C}(4)\right) ; 3.10(q, J=7.3, \mathrm{H}-\mathrm{C}(1)) ; 3.15-3.46\left(m, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right) ; 7.27-7.45(m, 5$ arom. H$)$. EI-MS: 347 (19, M^{+}), 332 (95), 258 (66), 105 (100).
(-)-(IR,5S,6S,9S, $\left.l^{\prime} \mathrm{S}\right)$-5,9-Dimethyl-3-(l^{\prime}-phenylethyl)spiro[[3]azabicyclo[4.3.0]nonane-8,2"- [1,3]dithiane] (29). As described for 25, with $\mathrm{LiAlH}_{4}(350 \mathrm{mg}, 9.2 \mathrm{mmol}), 27(1.44 \mathrm{~g}, 3.8 \mathrm{mmol})$, and THF (60 ml). FC (silica gel, AcOEt/hexane 1:3) gave $1.11 \mathrm{~g}(80 \%)$. Oil. $R_{\mathrm{f}} 0.6 .[\alpha]_{\mathrm{D}}^{20}=-34.8\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=1.55 \mathrm{~mm}$, $\mathrm{MeOH}): 193.5(-11.2) ; 218.0(1.7) ; 232.5(-2.4) ; 254.0(1.1) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.81(d, J=6.5$, $\mathrm{Me}-\mathrm{C}(5)) ; 1.00(d, J=7.0, \mathrm{Me}-\mathrm{C}(9)) ; 1.32\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.55\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(6)\right) ; 1.72(m$, $\mathrm{H}-\mathrm{C}(5)) ; 1.83-1.97\left(m, \mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 2.02\left(d d, J=12.1,3.9, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 2.12\left(m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 2.33(d d$, $J=14.1,2.0,1 \mathrm{H}-\mathrm{C}(7)) ; 2.45(d q, J=14.0,6.7, \mathrm{H}-\mathrm{C}(9)) ; 2.71\left(d m, J=12.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 2.80\left(m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(5^{\prime \prime}\right)\right.$, $\left.\mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(3^{\prime \prime}\right), 1 \mathrm{H}-\mathrm{C}(7)\right) ; 2.91\left(d d d, J=11.0,4.0,2.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.98\left(d d d, J=14.0,12.1,3.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(5^{\prime \prime}\right)\right) ; 3.15$ (ddd, $J=14.1,12.1,3.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}\right)$); $3.31\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.27-7.35\left(m, 5\right.$ arom. H). EI-MS: $361\left(17, M^{+}\right)$, 346 (100), 286 (29), 105 (100).
(-)-(lS,5R,6S,9R)-5,9-Dimethyl-3-azabicyclo[4.3.0/nonane ($=(-)$ - N-Demethyl- δ-skytanthine; (-)-7). A mixture of $25(40 \mathrm{mg}, 0.11 \mathrm{mmol})$ and Raney $-\mathrm{Ni}(200 \mathrm{mg}$, in abs. $\mathrm{EtOH}(5 \mathrm{ml})$ was heated to reflux under Ar for 5 h. TLC (AcOEt/hexane 1:1): no 25 left ($R_{f} 0.6$), more polar product ($R_{\mathrm{f}} 0.5$). The Raney-Ni was filtered off and the EtOH evaporated. The tarry residue was dissolved in $\mathrm{AcOH}(40 \mathrm{ml})$ and hydrogenated over $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$ in a Parr medium-pressure apparatus ($70 \mathrm{psi}, 45^{\circ}, 20 \mathrm{~h}$). The mixture was filtered, the filtrate evaporated, the resulting oil taken up in $\mathrm{MeOH}(1 \mathrm{ml})$, and oxalic acid $(6 \mathrm{mg})$ added, followed by $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{ml})$ which precipitated the oxalate. The precipitate was filtered off and dissolved in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{ml})$, the aq. soln. taken to $\mathrm{pH} 9-10$ by addition of $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{ml})$, and the combined extract dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated: $(-)-7(10 \mathrm{mg}$, $59 \%)$. Oil. $R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane $1: 1) 0.5 .[\alpha]_{\mathrm{D}}^{20}=-22.7\left(c=0.3, \mathrm{CHCl}_{3} ;[3 \mathrm{a}]:[\alpha]_{\mathrm{D}}^{20}=-21.5\left(c=7.7, \mathrm{CHCl}_{3}\right)\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.85(d, J=7.1, \mathrm{Me}-\mathrm{C}(5)) ; 0.94(d, J=7.2, \mathrm{Me}-\mathrm{C}(9)) ; 1.13\left(m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(8)\right) ; 1.54$ $\left(m, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(7), \mathrm{H}_{\mathrm{ux}}-\mathrm{C}(8)\right) ; 1.60(m, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(9)) ; 1.70(\mathrm{br} . s, \mathrm{NH}) ; 1.88(m, \mathrm{H}-\mathrm{C}(5)) ; 1.95\left(m, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(7)\right)$; $2.17(m, \mathrm{H}-\mathrm{C}(6)) ; 2.24\left(t, J=12.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 2.35\left(t, J=12.4, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.69\left(d d, J=12.4,4.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right)$; $2.76\left(d d, J=12.8,6.8, \mathrm{H}_{e q}-\mathrm{C}(2)\right)$. EI-MS: $153\left(48, M^{+}\right), 138(40), 44$ (100).
(-)-(1R,5S,6R,9S,1'S)-5,9-Dimethyl-3-(I^{\prime}-phenylethyl) spirol[3]azabicyclo[4.3.0]nonane-8, $2^{\prime \prime}-11,3$]dioxolane]-4-one (33). For $3 \mathrm{~h}, \mathbf{2 3 b}(830 \mathrm{mg}, 2.9 \mathrm{mmol})$, ethyleneglycol ($0.5 \mathrm{ml}, 2.9 \mathrm{mmol}$), and TsOH (cat.) were heated to reflux in toluene (50 ml). The soln. was made alkaline with aq. sat. NaHCO_{3} soln., the aq. phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$, the combined org. phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the oily residue purified by FC (Alox, AcOEt/hexane 1:2): 33 ($706 \mathrm{mg}, 74 \%$). Solid. $R_{\mathrm{f}} 0.4$. M.p. $102-104^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $) .[\alpha]_{\mathrm{D}}^{20}=-102.8(c=0.3$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot \mathrm{CD}(c=3.0 \mathrm{~mm}, \mathrm{MeOH}): 221.0(-17.1)$. IR (KBr): $1655(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.70$ $(d, J=7.2, \mathrm{Me}-\mathrm{C}(9)) ; 1.19(d, J=6.5, \mathrm{Me}-\mathrm{C}(5)) ; 1.48\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.48(m, \mathrm{H}-\mathrm{C}(7)) ; 1.55(m$, $\mathrm{H}-\mathrm{C}(1)) ; 1.72(d q, J=9.8,7.2, \mathrm{H}-\mathrm{C}(9)) ; 1.94(t t, J=11.0,8.0, \mathrm{H}-\mathrm{C}(6)) ; 2.10(d d, J=12.5,8.0,1 \mathrm{H}-\mathrm{C}(7)) ; 2.20$ $(d q, J=11.0,6.5, \mathrm{H}-\mathrm{C}(5)) ; 2.89\left(d d, J=13.0,11.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.11\left(d d, J=13.0,7.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 3.90$ ($s, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$); $5.96\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(\mathrm{l}^{\prime}\right)\right.$); $7.29-7.35\left(\mathrm{~m}, 5\right.$ arom. H). FAB-MS (thioglycerol): $330\left(100, M \mathrm{H}^{+}\right)$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3}$ (329.439): C 72.9, H 8.3 , N 4.3 ; found: $\mathrm{C} 73.0, \mathrm{H} 8.3, \mathrm{~N} 4.4$.
 $\mathrm{mg}, 3.7 \mathrm{mmol})$ was added to a soln. of $33(307 \mathrm{mg}, 0.93 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{NH}_{3} 1: 1(6 \mathrm{ml})$. After 15 min , solid $\mathrm{NH}_{4} \mathrm{Cl}$ was added carefully to eliminate excess Li . When this reaction was complete, NH_{3} was evaporated, the residue taken up in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$, the aq. layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$, the org. extract dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the solid recrystallized: $34(188 \mathrm{mg}, 90 \%)$. M.p. $210-212^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $) .[\alpha]_{\mathrm{D}}^{20}=+6.0(c=0.5$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). $\mathrm{CD}(c=5.19 \mathrm{~mm}, \mathrm{MeOH}): 194.5(-1.2) ; 214.5(4.12)$. IR (KBr): $3254(\mathrm{NH}), 1666$ and $1627(\mathrm{NCO})$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.93(d, J=7.3, \mathrm{Me}-\mathrm{C}(9)) ; 1.12(d, J=7.2, \mathrm{Me}-\mathrm{C}(5)) ; 1.51(d d, J=12.5,8.3$, $1 \mathrm{H}-\mathrm{C}(7)) ; 1.88(d q, J=9.0,7.0, \mathrm{H}-\mathrm{C}(9)) ; 2.05(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(1)) ; 2.15(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5), 1 \mathrm{H}-\mathrm{C}(7)) ; 3.07$ (ddd, $\left.J=13.0,10.0,2.8, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.40\left(d t, J=13.8,6.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 3.95\left(m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 5.98$ (br. $\left.s, \mathrm{NH}\right)$. FAB-MS (thioglycerol): 226 (100, $M \mathrm{H}^{+}$), 182 (21). Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{3}$ (225.288): C 64.0, H 8.5, N 6.2; found: C 64.1, H 8.8, N 6.0.
(-)-(1R,5S,6S,9S)-5,9-Dimethylspiro/[3]azabicyclo[4.3.0]nonane-8,2"-[1,3]dioxolane] (35). As described for 25, with $\mathrm{LiAlH}_{4}(77 \mathrm{mg}, 2.1 \mathrm{mmol}), 34(155 \mathrm{mg}, 0.69 \mathrm{mmol})$, THF (10 ml), and sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ soln. (2 ml): 35 ($118 \mathrm{mg}, 81 \%$). Oil. $[\alpha]_{\mathrm{D}}^{20}=-29.1\left(c=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{\mathrm{t}} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.79(d, J=6.5, \mathrm{Me}-\mathrm{C}(5))$; $0.90(d, J=6.8, \mathrm{Me}-\mathrm{C}(9)) ; 1.51(m, \mathrm{H}-\mathrm{C}(6)) ; 1.47(m, \mathrm{H}-\mathrm{C}(5)) ; 1.56(m, \mathrm{H}-\mathrm{C}(\mathrm{l})) ; 1.78(d d, J=14.0,2.2$,
$1 \mathrm{H}-\mathrm{C}(7)) ; 1.96(d d, J=14.0,7.9,1 \mathrm{H}-\mathrm{C}(7)) ; 2.11\left(d d, J=12.5,11.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.20(q u i n t ., J=6.8, \mathrm{H}-\mathrm{C}(9))$; $2.79\left(d d, J=13.0,4.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 2.90\left(d d d, J=12.5,3.8,1.9, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.98\left(d, J=13.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 3.80-3.97$ ($m, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$). EI-MS: 211 (19, M^{+}), 205 (14), 166 (45), 96 (100).
$(+)-(1 \mathrm{R}, 5 \mathrm{~S}, 6 \mathrm{~S}, 9 \mathrm{~S})-3,5,9-$ Trimethyl-3-azabicyclo[4.3.0]nonan-8-one ((+)-4). Formaldehyde (37%; 0.62 $\mathrm{mmol}, 50 \mu \mathrm{l})$, formic acid $(90 \%, 0.62 \mathrm{mmol}, 26 \mu \mathrm{l})$, and $35(118 \mathrm{mg}, 0.56 \mathrm{mmol})$ were heated at 100° for 1 h . This mixture was taken up in $2 \mathrm{~N} \mathrm{HCl}(3 \mathrm{ml})$ and stirred for 1 h at r.t. The resulting soln. was made alkaline with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln. and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$, the org. phase dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the oily residue purified by $\mathrm{FC}($ Alox, $\mathrm{AcOEt} /$ hexane $1: 3):(+)-4(57 \mathrm{mg}, 61 \%)$. Oil. $R_{\mathrm{f}} 0.5 \cdot[\alpha]_{\mathrm{D}}^{20}=+43.8\left(c=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. $\mathrm{CD}(c=9.38 \mathrm{~mm}, \mathrm{MeOH}): 297.0(1.1)$. IR (film): 1741 (CO). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.88(d, J=6.8$, $\mathrm{Me}-\mathrm{C}(5)) ; 1.05(d, J=7.5, \mathrm{Me}-\mathrm{C}(9)) ; 1.48(m, \mathrm{H}-\mathrm{C}(5)) ; 1.59\left(t, J=11.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 1.66(m, \mathrm{H}-\mathrm{C}(6)) ; 1.85(m$, $\mathrm{H}-\mathrm{C}(1)) ; 2.13\left(d d, J_{\mathrm{gem}}=12.2, J(2 \mathrm{ax}, 1)=4.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 2.26(\mathrm{~s}, \mathrm{MeN}) ; 2.28(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(7)) ; 2.49($ sext., $J=7.5$, $\mathrm{H}-\mathrm{C}(9)) ; 2.73\left(d d d, J_{\mathrm{gem}}=11.0, J(4,5)=3.5, J(4,2 \mathrm{eq})=2.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 2.90\left(d t, J_{\mathrm{gem}}=12.2, J(2,1)=\right.$ $\left.J(2,4 \mathrm{eq})=2.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.6(\mathrm{Me}-\mathrm{C}(5)) ; 17.3(\mathrm{Me}-\mathrm{C}(9)) ; 32.3$ (C(5)); 39.0 (C(6)), $40.4(\mathrm{MeN}) ; 43.0(\mathrm{C}(7)) ; 43.7$ (C(9)); 44.8 (C(1)); 55.6 (C(2)); 62.9 (C(4)); 221.1 (C(8)). EI-MS: 181 (71, $\left.M^{+}\right), 180(50), 57(100)$.
(-)-(1S,5S,6R,9R,1'S)-5,9-Dimethyl-3-(1'-phenylethyl)-3-azabicyclo[4.3.0]nonan-4-one (30). For $2 \mathrm{~h}, \mathbf{2 3 b}$ $(1.42 \mathrm{~g}, 5 \mathrm{mmol})$ and (4-toluenesulfono)hydrazide $(1.16 \mathrm{~g}, 6.25 \mathrm{mmol})$ in $\mathrm{EtOH}(10 \mathrm{ml})$ were heated to reflux. The EtOH was distilled off and replaced with DMF/sulfolane l:1 (20 ml). To this soln., cyclohexane (10 ml), TsOH (250 $\mathrm{mg})$, and $\mathrm{NaBH}_{3} \mathrm{CN}(1.21 \mathrm{~g}, 20 \mathrm{mmol})$ were added. With vigorous stirring and under Ar, this mixture was heated at 110° for 6 h . Every 2 h , equal portions $\mathrm{NaBH}_{3} \mathrm{CN}$ and TsOH were added. The mixture was diluted with 20 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with cyclohexane ($3 \times 20 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated: $\mathbf{3 0}\left(596 \mathrm{mg}, 44 \%\right.$). Oil. R_{f} (silica gel, AcOEt $\left./ \mathrm{CHCl}_{3} 1: 1\right) 0.5 .[\alpha]_{\mathrm{D}}^{20}=-92.0\left(c=0.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=4.49(\mathrm{~mm}, \mathrm{MeOH}): 198.5(-4.25) ; 222.0$ (-15.4). IR (film): $1654(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.80(d, J=6.6, \mathrm{Me}-\mathrm{C}(9)) ; 1.10(m, \mathrm{H}-\mathrm{C}(8)) ; 1.20$ $(d, J=6.9, \mathrm{Me}-\mathrm{C}(5)) ; 1.22(m, 1 \mathrm{H}-\mathrm{C}(7)) ; 1.34(m, \mathrm{H}-\mathrm{C}(1)) ; 1.46\left(d, J=7.3,3 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.47(m, \mathrm{H}-\mathrm{C}(9)) ; 1.76$ (d, quint., $J=6.5,2.8,1 \mathrm{H}-\mathrm{C}(8)) ; 1.92(m, \mathrm{H}-\mathrm{C}(6)) ; 2.00(m, 1 \mathrm{H}-\mathrm{C}(7)) ; 2.13(d q, J=10.5,6.9, \mathrm{H}-\mathrm{C}(5)) ; 2.83$ $\left(d d, J=13.5,11.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.45\left(d d, J=13.5,6.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 5.99\left(q, J=7.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.27-7.35(m, 5$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.0(\mathrm{Me}-\mathrm{C}(9)) ; 16.0\left(\mathrm{C}\left(2^{\prime}\right)\right) ; 18.5(\mathrm{Me}-\mathrm{C}(5)) ; 32.9(\mathrm{C}(7)) ; 35.4(\mathrm{C}(8))$; $39.4(\mathrm{C}(9)) ; 41.8(\mathrm{C}(5)) ; 43.4$ (C(2)); 44.2 (C(6)); 46.3 (C(1)); $49.8\left(\mathrm{C}\left(1^{\prime}\right)\right) ; 127.1,128.2,140.9$ (arom. C); 174.6 (C(4)). EI-MS: $272\left(50,[M+1]^{+}\right), 271\left(70, M^{+}\right), 256(31), 180(55), 105(100)$.
(+)-($1 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{R}, 9 \mathrm{R})$-5,9-Dimethyl-3-azabicyclo[4.3.0]nonan-4-one ($\mathbf{3 1}$). As described for 34, from $\mathrm{Li}(10 \mathrm{mg}$, $30(104 \mathrm{mg}, 0.38 \mathrm{mmol})+\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$, and $\mathrm{NH}_{3}(2 \mathrm{ml} ; 20 \mathrm{~min})$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation gave 31 (60 $\mathrm{mg}, 100 \%$). Solid. M.p. $164-166^{\circ}\left(\mathrm{CHCl}_{3} / \mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}^{20}=+13.1\left(c=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{CD}(c=6.43 \mathrm{~mm}, \mathrm{MeOH})$: 221.5 (3.19). IR (KBr): $3246(\mathrm{NH}), 1668$ and $1630(\mathrm{NCO}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.01(d, J=7.0$, $\mathrm{Me}-\mathrm{C}(9)) ; 1.16(d, J=7.2, \mathrm{Me}-\mathrm{C}(5)) ; 1.19-1.31(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(8)) ; 1.65(\mathrm{~m}, \mathrm{H}-\mathrm{C}(9)) ; 1.85(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1), 1 \mathrm{H}-\mathrm{C}(7))$; $1.99-2.13(m, 1 \mathrm{H}-\mathrm{C}(7), \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(5)) ; 3.02\left(d d d, J=12.0,10.0,2.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.38(d t, J=12.2,6.0$, $\mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)$); 5.90 (br. s, NH). FAB-MS (thioglycerol): $168\left(61, M \mathrm{H}^{+}\right), 167\left(63, M^{+}\right), 110(91), 73(100)$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}$ (167.251): C 71.8, H 10.3, N 8.4; found: C 71.8, H 10.2, N 8.4.
($1 \mathrm{~S}, 5 \mathrm{~S}, 6 \mathrm{~S}, 9 \mathrm{R}$)-5,9-Dimethyl-3-azabicyclo[4.3.0]nonane (32). As described for 25, with $\mathrm{LiAlH}_{4}(187 \mathrm{mg}, 4.8$ $\mathrm{mmol}), \mathbf{3 1}\left(270 \mathrm{mg}, 1.62 \mathrm{mmol}\right.$), THF (5 ml), and sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ soln. (2 ml). FC (silica gel, $\mathrm{MeOH} / \mathrm{CHCl}_{3} 1: 1$ with $1 \% \mathrm{NH}_{4} \mathrm{OH}, R_{\mathrm{f}} 0.2$) gave $32(200 \mathrm{mg}, 81 \%)$. Oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.83(d, J=6.2, \mathrm{Me}-\mathrm{C}(9))$; $0.99(d, J=6.8, \mathrm{Me}-\mathrm{C}(5)) ; 1.23(m, 1 \mathrm{H}-\mathrm{C}(8)) ; 1.38(m, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(9)) ; 1.51(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6), 1 \mathrm{H}-\mathrm{C}(7)) ; 1.75(m$, $1 \mathrm{H}-\mathrm{C}(7)) ; 1.93(\mathrm{~m}, 1 \mathrm{H}-\mathrm{C}(8)) ; 2.05(m, \mathrm{H}-\mathrm{C}(5)) ; 2.22\left(t, J=11.2, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.89\left(d d, J=14.1,5.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right)$; $2.99\left(d d, J=11.2,4.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right.$); 3.05 (br. $d, J=14.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.6$ ($\mathrm{Me}-\mathrm{C}(9)$); 19.4 ($\mathrm{Me}-\mathrm{C}(5)) ; 28.0(\mathrm{C}(7)) ; 32.2(\mathrm{C}(8)) ; 32.6(\mathrm{C}(9)) ; 32.9(\mathrm{C}(5)) ; 44.9(\mathrm{C}(2)) ; 45.6(\mathrm{C}(6)) ; 46.6(\mathrm{C}(1))$; 52.5 (C(4)). FAB-MS (thioglycerol): $154\left(100, M \mathrm{H}^{+}\right)$.
(-)-(1S,5S,6S,9R)-3,5,9-Trimethyl-3-azabicyclo[4.3.0]nonane ($=\alpha$-Skytanthine; (-)-2). A mixture of 32 $(140 \mathrm{mg}, 0.91 \mathrm{mmol})$ with formaldehyde $(37 \% ; 1.31 \mathrm{mmol}, 107 \mu \mathrm{l})$ and formic acid $(90 \% ; 1.32 \mathrm{mmol}, 56 \mu \mathrm{l})$ was heated at 100° for 30 min . Then aq. sat. NaHCO_{3} soln. (3 ml) was added, the soln. extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ ml), the combined org. extract dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, and the residue purified by FC (silica gel, $\left.i-\mathrm{BuOMe} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH} 95: 5: 0.5\right):(-)-2(102 \mathrm{mg}, 67 \%)$ Oil. $R_{\mathrm{f}} 0.5 .[\alpha]_{\mathrm{D}}^{20}=-75.0\left(c=1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;[7]\right.$: $[\alpha]_{\mathrm{D}}^{20}=+79$). ${ }^{1} \mathrm{H}-\mathrm{NMR} 360 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.81(d, J=6.2, \mathrm{Me}-\mathrm{C}(9)) ; 0.96(d, J=6.8, \mathrm{Me}-\mathrm{C}(5)) ; 1.15(m$, $1 \mathrm{H}-\mathrm{C}(8)) ; 1.38-1.51\left(m, 1 \mathrm{H}-\mathrm{C}(7), \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(9), \mathrm{H}-\mathrm{C}(6), \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 1.70(\mathrm{~m}, 1 \mathrm{H}-\mathrm{C}(7)) ; 1.93(m$, $1 \mathrm{H}-\mathrm{C}(8)) ; 2.22\left(d d, J=11.6,4.0, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 2.07(m, \mathrm{H}-\mathrm{C}(5)) ; 2.21(s, \mathrm{MeN}) ; 2.65\left(d d, J=9.7,2.0, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right)$; $2.79\left(d t, J=11.6,1.1, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 170.9(\mathrm{Me}-\mathrm{C}(9)) ; 19.5(\mathrm{Me}-\mathrm{C}(5)) ; 27.6$ (C(7)); $32.2(\mathrm{C}(8)) ; 33.0(\mathrm{C}(9)) ; 33.7(\mathrm{C}(5)) ; 45.0(\mathrm{MeN}) ; 46.9(\mathrm{C}(6)) ; 48.3(\mathrm{C}(1)) ; 55.8(\mathrm{C}(2)) ; 63.6(\mathrm{C}(4))$. EI-MS: $167\left(23, M^{+}\right), 166(58), 155(100)$.

REFERENCES

[1] M. D. Ivorra, M. Paya, A. Villar, J. Ethnopharmacol. 1989, 27, 243; M. Lozoya-Meckes, V. Mellado-Campos, ibid. 1985, 14, 1; C. M. Meckes-Lozoya, R. Ibañez-Camacho, Arch. Invest. Med. (Mex.) 1985, 16, 387; G. G. Colin, J. Am. Pharm. Soc. 1926, 15, 556.
[2] Y. Hammouda, M. S. Amer, J. Pharm. Sci. 1966, 55, 1452.
[3] a) G. H. Harris, E.C. Fixman, F. R. Stermitz, L. Castedo, J. Nat. Prod. 1988, 51, 543; b) G. M. Strunz, J. A. Findlay, in 'The Alkaloids', Ed. A. Brossi, Academic Press, Orlando, 1985, Vol. 26, pp.89-183; c) G. A. Cordell, in 'The Alkaloids', Ed. R.H.F. Manske, Academic Press, New York, 1977, Vol. 16, pp.431; d) E.M. Dickinson, G. Jones, Tetrahedron 1969, 25, 1523; e) G. B. Marini-Bettòlo, in 'Natural Resources and Human Health-Plants of Medicinal and Nutritional Value', Eds. S. Baba, O. Akerele, and Y. Kawaguchi, Elsevier, Amsterdam, 1992, p.103; f) H.H. Appel, M.P. Streeter, Rev. Latinoamer. Quim. 1970, 2, 63; g) C. G. Casinovi, J. Garbarino, G. B. Marini-Bettòlo, Chem. Ind. (London) 1961, 253.
[4] H.H. Appel, Scientia (Valparaiso) 1966, 33, 5; G. Gatti, M. Marotta, Ann. Ist. Super. Sanitá 1966, 2, 29.
[5] A. Takahashi, H. Naganawa, D. Ikeda, T. Okami, Tetrahedron 1991, 47, 3621.
[6] C. G. Casinovi, F. delle Monache, G. B. Marini-Bettòlo, E. Bianchi, J. Garbarino, Gazz. Chim. Ital. 1962, 92, 33; E. J. Eisenbraun, A. Bright, H. H. Appel, Chem. Ind. (London) 1962, 1242.
[7] W. Oppolzer, E. J. Jacobson, Tetrahedron Lett. 1986, 27, 1141.
[8] T. Kametani, Y. Suzuki, Ch. Ban, T. Honda, Heterocycles 1987, 26, 1491.
[9] M. M. Cid, U. Eggnauer, H.P. Weber, E. Pombo-Villar, Tetrahedron Lett. 1991, 32, 7233; M. M. Cid, U. Eggnauer, H. P. Weber, E. Pombo-Villar, 'Seventh European Symposium on Organic Chemistry', Namur, Belgium, July 15-19, 1991, p. 131.
[10] S. D. Larsen, P. A. Grieco, J. Am. Chem. Soc. 1985, 107, 1768.
[11] H. Waldmann, M. Braun, Liebigs Ann. Chem. 1991, 1045.
[12] P.D. Bailey, G. R. Brown, F. Korber, A. Reed, R.D. Wilson, Tetrahedron Asymmetry 1991, 2, 1263.
[13] E. Pombo-Villar, J. Boelsterli, M. M. Cid, J. France, B. Fuchs, H.P. Weber, M. Walkinshaw, Helu. Chim. Acta 1993, 76, in press.
[14] M. Ishida, M. Muramaru, S. Kato, Synthesis 1990, 562.
[15] L. Ghosez, R. Montaigne, A. Roussel, H. Vanlierde, P. Mollet, Tetrahedron 1971, 27, 615.
[16] M.-C. Lasne, J. L. Ripoll, A. Thuillier, J. Chem. Res. Synop. 1982, 214; P. A. Grieco, D.T. Parker, W.F. Fobare, R. Ruckle, J. Am. Chem. Soc. 1987, 109, 5859; P. Grieco, A. Bahsas, J. Org. Chem. 1987, 52, 5746; P. A. Grieco, J. D. Clark, ibid. 1990, 55, 2271.
[17] a) D. Blondet, C. Morin, Heterocycles 1982, 19, 2155; b) P. D. Bailey, R. D. Wilson, G. R. Brown, Tetrahedron Lett. 1989, 30, 6781; c) T. Kobayashi, K. Ono, H. Kato, Bull. Chem. Soc. Jpn. 1992, 65, 61.
[18] A. Heesing, W. Herdering, Chem. Ber. 1983, 116, 1081; W. Schmidt, H.-J. Ballschmidt, M. Kiesinger, A. Heesing, W. Herdering, ibid. 1983, 116, 1097; A. Heesing, W. Herdering, G. Henkel, B. Krebs, ibid. 1983, 116, 1107; V. Lucchini, M. Prato, G. Scorrano, P. Tecilla, J. Org. Chem. 1988, 53, 2251.
[19] C.F. Palmer, K.P. Parry, S. M. Roberts, J. Chem. Soc., Perkin Trans. / 1991, 484; alternative explanation in: C. F. Palmer, K. P. Parry, S. M. Roberts, V. Sik, ibid. 1992, 1021.
[20] S. Blechert, Synthesis 1989, 71; H. Heimgartner, H.-J. Hansen, H. Schmid, in 'Iminium Salts in Organic Chemistry', Eds. H. Böhme and H. G. Viehe, John Wiley and Sons, New York, 1979, Part 2, p. 655; S. Jolidon, H.-J. Hansen, Helv. Chim. Acta 1977, 60, 978; J. Ficini, C. Barbara, Tetrahedron Lett. 1967, 1421; R. K. Hill, N. W. Gilman, ibid. 1967, 1421; R. Gompper, B. Kohl, Angew. Chem. Int. Ed. 1982, 21, 198; M. J. Kurth, O. W. H. Decker, H. Hope, M. D. Yanuck, J. Am. Chem. Soc. 1985, 107, 443.
[21] M.J.S. Dewar, E.F. Healy, J. Am. Chem. Soc. 1984, 106, 7127.
[22] I. B. Abdrakhnanov, Z. N. Saraeva, N. G. Nugmatullim, V.D. Komissarov, G. A. Tolstikov, Izv. Akad. Nauk SSSR, Ser. Khim. 1989, 2303 (CA: 112, 97840r).
[23] J. C. Gilbert, K.P. A. Senaratne, Tetrahedron Lett. 1984, $25,2303$.
[24] G. R. Cook, N.S. Barta, J. R. Stille, J. Org. Chem. 1992, 57, 461; P.D. Bailey, M. J. Harrison, Tetrahedron Lett. 1990, 3I, 727; ibid. 1989, 30, 5341.
[25] S. Ito, T. Tsunoda, Pure Appl. Chem. 1990, 62, 1405; T. Tsunoda, O. Sasaki, S. Ito, Tetrahedron Lett. 1990, 31, 727.
[26] J. R. Hwu, D. A. Anderson, J. Chem. Soc., Perkin Trans. 1 1991, 3199.
[27] S. I. Murahashi, Y. Makabe, K. Kunita, J. Org. Chem. 1988, 53, 4489.
[28] a) J. M. Brown, B. T. Golding, T. J. Stofko, J. Chem. Soc., Chem. Commun. 1973, 319; b) C. Vogel, P. Delavier, Tetrahedron Lett. 1989, 1789.
[29] E. L. Stogryn, S. J. Brois, J. Am. Chem. Soc. 1967, 89,605 ; A. Hassner, R. D'Costa, A. T. McPhail, W. Butler, Tetrahedron Lett. 1981, 22, 3691; M.A. Calcagno, E. E. Schweizer, J. Org. Chem. 1978, 43, 4207; K. Hassenrück, H.D. Martin, Synthesis 1988, 569.
[30] D. Felix, K. Gschwend-Steen, A. E. Wick, A. Eschenmoser, Helv. Chim. Acta 1969, 52, 1030.
[31] P. Metz, C. Mues, Tetrahedron 1988, 44, 6841.
[32] W.G. Earley, E. J. Jacobsen, G.P. Meier, T. Oh, L. E. Overman, Tetrahedron Lett. 1988, 29, 3781; see also [25].
[33] S. M. Roberts, C. Smith, R. J. Thomas, J. Chem. Soc., Perkin Trans. 1 1990, 1493; R. Maurya, C. A. Pittol, S. M. Roberts, R. J. Thomas, J. O. Williams, ibid. 1992, 1617.
[34] B. Trost, R. A. Kunz, J. Org. Chem. 1974, 39, 2475.
[35] E.J. Leopold, Org. Synth. 1990, Coll. Vol. 7, 258.
[36] P. Callant, R. Ongena, M. Vandevalle, Tetrahedron 1981, 2085.
[37] E. Wenkert, J. E. Yoder, J. Org. Chem. 1970, 35, 2986.
[38] W. G. Dauben, E. J. Deviny, J. Org. Chem. 1966, 31, 3794; W. G. Dauben, R. E. Wolf, ibid. 1970, 35, 374; ibid. 1970, 35,2631 ; for a case where this stereoelectronic factor is overridden by other factors, see L.N. Mander, J. V. Turner, B. G. Coombe, Aust. J. Chem. 1974, 27, 1985.
[39] E. Piers, P.M. Worster, J. Am. Chem. Soc. 1972, 94, 2895; D. Caine, W. R. Pennington, T. L. Smith, Tetrahedron Lett. 1978, 2663; H. N. C. Wong, M.-Y. Chon, Ch.-W. Tse, Y.-Ch. Yip, J. Tanko, T. Hudlicky, Chem. Rev. 1989, 89, 165.
[40] B. Gröbel, D. Seebach, Synthesis 1977, 357.
[41] R. O. Hutchins, C. A. Milenski, B. E. Maryanoff, J. Am. Chem. Soc. 1973, 95, 3662.
[42] D. Friedrich, L. A. Paquette, J. Org. Chem. 1991, 56, 3831.
[43] F. Korte, J. Falbe, A. Zschoke, Tetrahedron 1959, 6, 201; K. J. Clark, G. I. Fray, R. H. Jaeger, R. Robinson, ibid. 1959, 6, 217; K. Sisido, K. Inomata, T. Kageyama, K. Utimoto, J. Org. Chem. 1968, 33, 3149; F. Bellesia, U. M. Pagnoni, R. Trave, G. D. Andreeti, G. Bocelli, P. Sgaraboto, J. Chem. Soc., Perkin Trans. 2 1979, 1341 ; T. Sakai, K. Nakajima, T. Sakan, Bull. Chem. Soc. Jpn. 1980, 53, 3683.
[44] E. J. Eisenbraun, D. W. Salkins, C. E. Browne, J. Org. Chem. 1988, 53, 3698.
[45] J. K. Crandall, L. C. Crawley, Org. Synth. 1988, Coll. Vol. 6, 948.
[46] R. A. Baley, W. B. Motherwell, Tetrahedron Lett. 1991, 43, 6211.
[47] D. L. J. Clive, S. Daigneault, J. Org. Chem. 1991, 56, 3801.

[^0]: ${ }^{1}$) Ishida et al. [14] reported an analogous reaction of allylaziridines and dichloroketene and also found that Zn /trichloroacetyl chloride was unsatisfactory for the reaction. Presumably, coordination of the N -atom with the Zn surface inhibits the reaction.
 ${ }^{2}$) Molecular models were constructed using the software in SYBYL 5.4 (Tripos Associates Inc., 1699 S. Hanley Rd., Suite 303, St. Louis, Missouri 63144, USA), and their energy minimised using the MAXIMIN force field, an internal Sandoz product based on MM2.

[^1]: The gross structure of 18 a follows from its ${ }^{i} \mathrm{H}$-NMR spectrum, which is fully assigned by homonuclear decoupling experiments. The coupling constants $J(1,2 \mathrm{ax})$ and $J(1,2 \mathrm{eq})$ are 1.8 and 4.5 Hz , respectively; and $J(5,6)$ is 7.1 Hz . In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1 8 a} / \mathbf{1 8 b}$, the signals at $1.30,1.89,2.40$, and 2.88 ppm are clearly resolved, whereas that at 2.10 ppm is partially overlapping with the signal at 2.20 ppm , corresponding to $1 \mathrm{H}-\mathrm{C}(9)$ of 18 a . In

[^2]: ${ }^{3}$) $\mathrm{On} \mathrm{Li} / \mathrm{NH}_{3}$ treatment of 22, the 1-phenylethyl group was removed during the cyclopropane cleavage (yield not determined; unpublished results).

[^3]: $\left.{ }^{4}\right) \quad$ Kindly provided by Prof. F. R. Stermitz [3a].

[^4]: ${ }^{5}$) Lactam 31 is formally the aza-analogue of the iridolactone $(+)$-isoiridomyrmecin.
 ${ }^{6}$) Kindly provided by Prof. W. Oppolzer [7].

